
Practical performance enhancements to the evaluation
model of the Hazel programming environment

Jonathan Lam1 Prof. Fred Fontaine, Advisor1

Prof. Robert Marano, Co-advisor1 Prof. Cyrus Omar2

1Electrical Engineering
The Cooper Union for the Advancement of Science and Art

2Electrical Engineering and Computer Science
Future of Programming Lab (FPLab), University of Michigan

2022/04/29

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 1 / 47

Overview

Project context

Hazel live programming environment An experimental editor with typed
holes aimed at solving the “gap problem,” developed at UM

Functional programming Context for PL theory

Implementation-based Mostly practically-driven

Project goal

Improve aspects of Hazel evaluation Mostly performance-related

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 2 / 47

Overview

Project scope

Evaluation with environments Lazy variable lookup for performance

Hole instances to hole closures Redefining hole instances for performance

Implementing fill-and-resume (FAR) Efficiently resume evaluation

Project evaluation

Empirical evaluation Measure performance gain of motivating cases

Informal metatheory State metatheorems and provide proof sketches

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 3 / 47

Primer on PL theory

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 4 / 47

Primer on PL theory

A programming language is a specification

Syntax is the grammar of a valid program

Semantics describes the behavior of a syntactically valid program

τ ::= τ → τ | b | LM
e ::= c | x | λx : τ.e | e e | e : τ | LM | LeM

Figure: Hazelnut grammar

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 5 / 47

Primer on PL theory

Static and dynamic semantics

Statics Edit actions, type-checking, elaboration (“compile-time”)

Dynamics Evaluation (“run-time”)

e1 ⇓ λx .e ′1 e2 ⇓ e ′2 [e ′2/x]e ′1 ⇓ e

e1 e2 ⇓ e
EAp

Figure: Evaluation rule for function application using a big-step semantics

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 6 / 47

Primer on PL theory

A brief primer on the λ-calculus

Untyped λ-calculus Simple universal model of computation by Church

e ::= x

| λx .e
| e e

(a) Grammar

λx .e ⇓ λx .e Λ-ELam

e1 ⇓ λx .e ′1 [e2/x]e ′1 ⇓ e

e1 e2 ⇓ e
Λ-EAp

(b) Dynamic semantics

Figure: The untyped λ-calculus

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 7 / 47

The Hazel live programming environment

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 8 / 47

The Hazel live programming environment

The Hazel programming language and environment

Live programming Rapid static and dynamic feedback (“gap problem”)

Structured editor Elimination of syntax errors

Gradually typed Hole type and cast-calculus based on GTLC

Purely functional Avoids side-effects and promotes commutativity

(a) The Hazelgrove organization (b) Implemented in ReasonML and JSOO

Figure: Hazel implementation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 9 / 47

The Hazel live programming environment

The Hazel programming interface

Figure: The Hazel interface

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 10 / 47

The Hazel live programming environment

Hazelnut: A bidirectionally-typed static semantics

(Typed) expression holes Internalize “red squiggly underlines” [1]

Action semantics Structural editing behavior, ensures always well-typed

(a) Haskell static type error (b) Hazel non-empty hole

Figure: “Red squiggly underline”

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 11 / 47

The Hazel live programming environment

Hazelnut Live: A bidirectionally-typed dynamic semantics

Internal language Cast calculus from GTLC for dynamic typing

Hole evaluation Evaluation continues around holes, captures environment

Figure: Illustration of Hazelnut Live context inspector [2]

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 12 / 47

Evaluation using the environment model

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 13 / 47

Evaluation using the environment model

Evaluation using environments vs. substitution

let x = 3 in

if True then 0 else x

(a) Expression with variable binding

if True then 0 else 3

(b) Substitution (eager)

{x ← 3} ` (if True then 0 else x)

(c) Environments (lazy)

Figure: Comparison of variable binding methods

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 14 / 47

Evaluation using the environment model

Updated evaluation rules

σ ` d ⇓ d ′ d evaluates to d ′ given environment σ

σ ` (λx : τ.d) ⇓ [σ](λx : τ.d ′)
ELam

σ, x ← d ` x ⇓ d
EVar

σ ` d1 ⇓ [σ′]λx : τ.d ′1 σ ` d2 ⇓ d ′2 σ′, x ← d ′2 ` d ′1 ⇓ d

σ ` d1 d2 ⇓ d
EAp

σ ` LMu ⇓ [σ]LMu EvalB-EHole
σ ` d ⇓ d ′

σ ` LdMu ⇓ [σ]Ld ′Mu EvalB-NEHole

Figure: Big-step semantics for evaluation with environments

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 15 / 47

Evaluation using the environment model

Matching the result from evaluation using substitution

d ⇑[] d
′ d is substitutes to d ′ inside the evaluation boundary

σ ⇑[] σ
′ σ′ ` d ⇑[] d

′

[σ]d ⇑[] d
′ PPI[]Closure

σ ` d ⇑[] d
′ d substitutes to d ′ outside the evaluation boundary

σ, x ← d ` x ⇑[] d
PPO[]BoundVar

σ ` LMu ⇑[] [σ]LM
u PPO[]EHole

σ ` d ⇑[] d
′

σ ` LdMu ⇑[] [σ]Ld
′Mu PPO[]NEHole

Figure: Big-step semantics for substitution postprocessing

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 16 / 47

Evaluation using the environment model

Generalized closures

Notation in blue is non-standard

Interpretation Sample expression

Function closure [σ]λx .d
Hole closure [σ]LdMu

Closure around unmatched let [σ](let x = d1 in d2)
Closure around unmatched case [σ](case x of rules)
Closure around filled hole JσKdfill

Table: Examples of generalized closures

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 17 / 47

Evaluation using the environment model

The evaluation boundary

let a = λ x . { 2 + LM1 } in

a 5 + LaM2

(a) Program

⇓ (2 + [x ← 5]LM1) + [a← . . .]L[∅](λx.2 + LM1)M2

(b) Program result
·+ ·

·+ ·

2 [x ← 5]·

LM1

[a← . . .]·

L · M2

[∅]·

λx .·

·+ ·

2 LM1

(c) Program result AST

Figure: Illustration of evaluation boundary

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 18 / 47

Identifying hole instances by physical environment

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 19 / 47

Identifying hole instances by physical environment

Motivation for hole instances

let a = LM1 in

let f = λ x . { LM2 } in

f 3 + f 4

Figure: Illustration of hole instances

[a← [∅]LM1, x ← 3]LM2 + [a← [∅]LM1, x ← 4]LM2

Figure: Result of Figure 12

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 20 / 47

Identifying hole instances by physical environment

Motivation for hole closures/instantiations

let a = LM1 in

let b = LM2 in

let c = LM3 in

let d = LM4 in

let e = LM5 in

let f = LM6 in

let g = LM7 in

...

let x = LMn in

LMn+1

Figure: A Hazel program that generates 2N total hole instances

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 21 / 47

Identifying hole instances by physical environment

Motivation for hole closures/instantiations

[σ4]LM4

[σ3]LM3

[σ2]LM2

[∅]LM1

c

b

ab

a

a

(a) Structure of the result

[σ4]LM4:1

[σ3]LM3:1

[σ2]LM2:2

[∅]LM1:4

[∅]LM1:3[∅]LM1:2

[σ2]LM2:1[∅]LM1:1

c
b

a

b
aa

a

(b) Numbered hole instances in the result

Figure: Hole numbering in Figure 14

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 22 / 47

Identifying hole instances by physical environment

A unified postprocessing algorithm

d ⇑ (H, d ′) d postprocesses to d ′ with hole closure info H

d ⇑[] d
′ ∅,∅ ` d ′ ⇑i d

′′ a H

d ⇑ d ′′ a H
PP-Result

Figure: Overall postprocessing judgment

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 23 / 47

The fill-and-resume (FAR) optimization

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 24 / 47

The fill-and-resume (FAR) optimization

Motivating example

What happens if we want to fill the hole LM1 with the expression x + 2?

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

}

in x = f 30

in LM1

Figure: A sample program with an expensive calculation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 25 / 47

The fill-and-resume (FAR) optimization

Motivating example

[f ← [∅]λx .{. . . }, x ← 832040]LM1

Figure: Result of expensive calculation

[f ← [∅]λx .{. . . }, x ← 832040](x + 2)

832040 + 2

832042

Figure: Fill and resume

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 26 / 47

The fill-and-resume (FAR) optimization

The FAR process

Check if a fill is appropriate. If so, then:

1 Detect fill parameters (u, d)

2 “Fill”: substitute d for every instance of u

3 “Resume”: resume evaluation

If not, evaluate as usual.

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 27 / 47

The fill-and-resume (FAR) optimization

1-step vs. n-step FAR

...

2 + 3 ∗ LM1

2 + LM2 ∗ LM1

2 + LM1

2 + 5

2 + (5)

2 + LM1 ∗ (5)

2 + 3 ∗ (5)

2 + 3 ∗ (5 + LM1)

1-step n-step

Figure: 1-step vs. n-step FAR detection

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 28 / 47

The fill-and-resume (FAR) optimization

Detecting a valid fill operation

Structural diff algorithm Intuitive, fast n-step FAR detection;
find the smallest hole that subsumes the diff root

λx .LM3 −→ λx .4

u = 3

d = 4

2 + Lλx .3M1 −→ 2 + 5 ∗ LM1

u = 1

d = 5 ∗ LM1

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 29 / 47

The fill-and-resume (FAR) optimization

The fill and resume operations

The fill operation

Mark closures un-final
[JσKd/[σ]d]dresult

Fill hole instances
[dfill/LMufill]dresult

The resume operation

Evaluate as normal, except:

Re-evaluate closures
JσKd ⇓ [σ′]d ′

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 30 / 47

The fill-and-resume (FAR) optimization

Proposed updates to the evaluation model

ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α

Program.t

e

duneval

deval

deval

drenumbered ,H

Figure: Previous evaluation model

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 31 / 47

The fill-and-resume (FAR) optimization

Proposed updates to the evaluation model

ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

DHExpDiff.diff_dhexp

FillAndResume.preprocess

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α
Program.t

e

duneval

no fill diff

u, d

dpreprocess

deval

deval

dpostprocess ,H

list(Program.t)

Figure: Proposed evaluation model

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 32 / 47

Empirical results

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 33 / 47

Empirical results

Evaluation with environments

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

(a) Source

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0

n

103

3× 102

4× 102

6× 102

2× 103

T
im

e
(m

s)

dev

e-e

(b) Performance

Figure: A computationally expensive Hazel program with no holes

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 34 / 47

Empirical results

Evaluation with environments

let a = 0 in

let b = 0 in

let c = 0 in

let d = 0 in

let e = 0 in

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

(a) Source

0 2 4 6 8 10

Extra global variables

1.0

1.2

1.4

1.6

1.8

2.0

R
el

at
iv

e
el

ap
se

d
ti

m
e

(n
or

m
al

iz
ed

to
0

ex
tr

a
va

ri
ab

le
s)

dev n=22

dev n=23

dev n=24

dev n=25

dev n=26

e-e n= 22

e-e n= 23

e-e n= 24

e-e n= 25

e-e n= 26

(b) Performance

Figure: Adding global bindings to the fib(n) program

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 35 / 47

Empirical results

Evaluation with environments

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

| 0 ⇒ f 0 + f 0 + f 0 + f 0 + f 0

end

} in

f 25

(a) Source

0 2 4 6 8 10

Variables in unused branch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

at
iv

e
el

ap
se

d
(n

or
m

al
iz

ed
to

0
ex

tr
a

va
ri

ab
le

s)

dev n=22

dev n=23

dev n=24

dev n=25

dev n=26

e-e n=22

e-e n=23

e-e n=24

e-e n=25

e-e n=26

(b) Performance

Figure: Adding variable substitutions to unused branches

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 36 / 47

Empirical results

Hole numbering motivating example

let a = LM1 in

let b = LM2 in

let c = LM3 in

let d = LM4 in

let e = LM5 in

let f = LM6 in

let g = LM7 in

...

let x = LMn in

LMn+1

Figure: A Hazel program that generates 2N total hole instances

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 37 / 47

Empirical results

Hole numbering motivating example

0 5 10 15 20 25

Number of holes

100

101

102

103

104

T
im

e
(m

s)

evaluate

postprocessing

equality check

overall

(a) dev branch

0 5 10 15 20 25

Number of holes

100

101

102

103

104

T
im

e
(m

s)

evaluate

postprocessing

equality check

overall

(b) eval-environment branch

Figure: Performance of evaluating program in Figure 14

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 38 / 47

Empirical results

FAR motivating example

Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

let f = ... in

let a = LM1 in

LM2

7 - 0 0

let f = ... in

let a = f in

LM2

12 21 9 9

let f = ... in

let a = f LM3 in

LM2

17 - 0 9

let f = ... in

let a = f 2 in

LM2

58 69 11 20

Table: A program edit history with an expensive computation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 39 / 47

Empirical results

FAR motivating example

Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

let f = ... in

let a = f 25 in

LM2

4762964 - 0 20

let f = ... in

let a = f 25 in

LM2 + LM4

4762966 12 -4762954 -4762934

let f = ... in

let a = f 25 in

LM2 + 2

4762966 21 -4762954 -9525879

let f = ... in

let a = f 25 in

a + 2

4792967 13 -4792954 -14288813

Table: A program edit history with an expensive computation, cont’d.

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 40 / 47

Empirical results

FAR motivating example

1 2 3 4 5 6 7 8

Step number

101

102

103

104

105

106

C
al

ls
to

ev
al

u
at

e

(a) Normal evaluation

1 2 3 4 5 6 7 8

Step number

101

102

103

104

105

106

C
al

ls
to

ev
al

u
at

e

(b) With one-step FAR

Figure: Number of evaluation steps per edit in Table 2

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 41 / 47

Discussion and conclusions

Table of Contents

1 Primer on PL theory

2 The Hazel live programming environment

3 Evaluation using the environment model

4 Identifying hole instances by physical environment

5 The fill-and-resume (FAR) optimization

6 Empirical results

7 Discussion and conclusions

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 42 / 47

Discussion and conclusions

Innovations of this work

Generalized closures Useful for evaluation and memoization

Unique hole closures Grouping hole instances by environment

FAR as a generalization of evaluation Each edit is a n-step FAR

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 43 / 47

Discussion and conclusions

Metatheory

Invariants of the evaluation steps; informally justified

Preservation

Evaluation boundary

Singular evaluation boundary

Substitution postprocessing closures

Evaluation with environments correctness

Hole numbering postprocessing

Fill operation

Resume operation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 44 / 47

Discussion and conclusions

Future work

Fully automatic FAR Integrate FAR into the Hazel MVC model

n-step FAR Integrate edit history into FAR

Formal evaluation of metatheory Check coverage and correctness of
metatheorems using Agda

User editing studies Gather data on “true” performance impact

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 45 / 47

Discussion and conclusions

Conclusions

Evaluation with environments Expected performance gains,
implementation remains functionally pure

Generalized closures Simplify many parts of the implementation, also
useful for FAR

Memoization of environments Applicable for postprocessing, equality
checking, resume operation

FAR PoC Including n-step detection, re-evaluation of closures

Plausible metatheory For future work in Agda

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 46 / 47

Discussion and conclusions

References

Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and Matthew A. Hammer.

Hazelnut: A Bidirectionally Typed Structure Editor Calculus.
In 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2017), 2017.

Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer.

Live functional programming with typed holes.
PACMPL, 3(POPL), 2019.

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 47 / 47

	Primer on PL theory
	The Hazel live programming environment
	Evaluation using the environment model
	Identifying hole instances by physical environment
	The fill-and-resume (FAR) optimization
	Empirical results
	Discussion and conclusions

