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Overview

Project context

Hazel live programming environment An experimental editor with typed
holes aimed at solving the “gap problem,” developed at UM

Functional programming Context for PL theory

Implementation-based Mostly practically-driven

Project goal

Improve aspects of Hazel evaluation Mostly performance-related
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Overview

Project scope

Evaluation with environments Lazy variable lookup for performance

Hole instances to hole closures Redefining hole instances for performance

Implementing fill-and-resume (FAR) Efficiently resume evaluation

Project evaluation

Empirical evaluation Measure performance gain of motivating cases

Informal metatheory State metatheorems and provide proof sketches
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Primer on PL theory

A programming language is a specification

Syntax is the grammar of a valid program

Semantics describes the behavior of a syntactically valid program

τ ::= τ → τ | b | LM
e ::= c | x | λx : τ.e | e e | e : τ | LM | LeM

Figure: Hazelnut grammar
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Primer on PL theory

Static and dynamic semantics

Statics Edit actions, type-checking, elaboration (“compile-time”)

Dynamics Evaluation (“run-time”)

e1 ⇓ λx .e ′1 e2 ⇓ e ′2 [e ′2/x ]e ′1 ⇓ e

e1 e2 ⇓ e
EAp

Figure: Evaluation rule for function application using a big-step semantics
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Primer on PL theory

A brief primer on the λ-calculus

Untyped λ-calculus Simple universal model of computation by Church

e ::= x

| λx .e
| e e

(a) Grammar

λx .e ⇓ λx .e Λ-ELam

e1 ⇓ λx .e ′1 [e2/x ]e ′1 ⇓ e

e1 e2 ⇓ e
Λ-EAp

(b) Dynamic semantics

Figure: The untyped λ-calculus
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The Hazel live programming environment
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The Hazel live programming environment

The Hazel programming language and environment

Live programming Rapid static and dynamic feedback (“gap problem”)

Structured editor Elimination of syntax errors

Gradually typed Hole type and cast-calculus based on GTLC

Purely functional Avoids side-effects and promotes commutativity

(a) The Hazelgrove organization (b) Implemented in ReasonML and JSOO

Figure: Hazel implementation
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The Hazel live programming environment

The Hazel programming interface

Figure: The Hazel interface
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The Hazel live programming environment

Hazelnut: A bidirectionally-typed static semantics

(Typed) expression holes Internalize “red squiggly underlines” [1]

Action semantics Structural editing behavior, ensures always well-typed

(a) Haskell static type error (b) Hazel non-empty hole

Figure: “Red squiggly underline”
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The Hazel live programming environment

Hazelnut Live: A bidirectionally-typed dynamic semantics

Internal language Cast calculus from GTLC for dynamic typing

Hole evaluation Evaluation continues around holes, captures environment

Figure: Illustration of Hazelnut Live context inspector [2]

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 12 / 47



Evaluation using the environment model
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Evaluation using the environment model

Evaluation using environments vs. substitution

let x = 3 in

if True then 0 else x

(a) Expression with variable binding

if True then 0 else 3

(b) Substitution (eager)

{x ← 3} ` (if True then 0 else x)

(c) Environments (lazy)

Figure: Comparison of variable binding methods
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Evaluation using the environment model

Updated evaluation rules

σ ` d ⇓ d ′ d evaluates to d ′ given environment σ

σ ` (λx : τ.d) ⇓ [σ](λx : τ.d ′)
ELam

σ, x ← d ` x ⇓ d
EVar

σ ` d1 ⇓ [σ′]λx : τ.d ′1 σ ` d2 ⇓ d ′2 σ′, x ← d ′2 ` d ′1 ⇓ d

σ ` d1 d2 ⇓ d
EAp

σ ` LMu ⇓ [σ]LMu EvalB-EHole
σ ` d ⇓ d ′

σ ` LdMu ⇓ [σ]Ld ′Mu EvalB-NEHole

Figure: Big-step semantics for evaluation with environments
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Evaluation using the environment model

Matching the result from evaluation using substitution

d ⇑[] d
′ d is substitutes to d ′ inside the evaluation boundary

σ ⇑[] σ
′ σ′ ` d ⇑[] d

′

[σ]d ⇑[] d
′ PPI[]Closure

σ ` d ⇑[] d
′ d substitutes to d ′ outside the evaluation boundary

σ, x ← d ` x ⇑[] d
PPO[]BoundVar

σ ` LMu ⇑[] [σ]LM
u PPO[]EHole

σ ` d ⇑[] d
′

σ ` LdMu ⇑[] [σ]Ld
′Mu PPO[]NEHole

Figure: Big-step semantics for substitution postprocessing
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Evaluation using the environment model

Generalized closures

Notation in blue is non-standard

Interpretation Sample expression

Function closure [σ]λx .d
Hole closure [σ]LdMu

Closure around unmatched let [σ](let x = d1 in d2)
Closure around unmatched case [σ](case x of rules)
Closure around filled hole JσKdfill

Table: Examples of generalized closures
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Evaluation using the environment model

The evaluation boundary

let a = λ x . { 2 + LM1 } in

a 5 + LaM2

(a) Program

⇓ (2 + [x ← 5]LM1) + [a← . . . ]L[∅](λx.2 + LM1)M2

(b) Program result
·+ ·

·+ ·

2 [x ← 5]·

LM1

[a← . . . ]·

L · M2

[∅]·

λx .·

·+ ·

2 LM1

(c) Program result AST

Figure: Illustration of evaluation boundary
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Identifying hole instances by physical environment
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Identifying hole instances by physical environment

Motivation for hole instances

let a = LM1 in

let f = λ x . { LM2 } in

f 3 + f 4

Figure: Illustration of hole instances

[a← [∅]LM1, x ← 3]LM2 + [a← [∅]LM1, x ← 4]LM2

Figure: Result of Figure 12
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Identifying hole instances by physical environment

Motivation for hole closures/instantiations

let a = LM1 in

let b = LM2 in

let c = LM3 in

let d = LM4 in

let e = LM5 in

let f = LM6 in

let g = LM7 in

...

let x = LMn in

LMn+1

Figure: A Hazel program that generates 2N total hole instances
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Identifying hole instances by physical environment

Motivation for hole closures/instantiations

[σ4]LM4

[σ3]LM3

[σ2]LM2

[∅]LM1

c

b

ab

a

a

(a) Structure of the result

[σ4]LM4:1

[σ3]LM3:1

[σ2]LM2:2

[∅]LM1:4

[∅]LM1:3[∅]LM1:2

[σ2]LM2:1[∅]LM1:1

c
b

a

b
aa

a

(b) Numbered hole instances in the result

Figure: Hole numbering in Figure 14
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Identifying hole instances by physical environment

A unified postprocessing algorithm

d ⇑ (H, d ′) d postprocesses to d ′ with hole closure info H

d ⇑[] d
′ ∅,∅ ` d ′ ⇑i d

′′ a H

d ⇑ d ′′ a H
PP-Result

Figure: Overall postprocessing judgment
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The fill-and-resume (FAR) optimization
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The fill-and-resume (FAR) optimization

Motivating example

What happens if we want to fill the hole LM1 with the expression x + 2?

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

}

in x = f 30

in LM1

Figure: A sample program with an expensive calculation
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The fill-and-resume (FAR) optimization

Motivating example

[f ← [∅]λx .{. . . }, x ← 832040]LM1

Figure: Result of expensive calculation

[f ← [∅]λx .{. . . }, x ← 832040](x + 2)

832040 + 2

832042

Figure: Fill and resume
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The fill-and-resume (FAR) optimization

The FAR process

Check if a fill is appropriate. If so, then:

1 Detect fill parameters (u, d)

2 “Fill”: substitute d for every instance of u

3 “Resume”: resume evaluation

If not, evaluate as usual.
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The fill-and-resume (FAR) optimization

1-step vs. n-step FAR

...

2 + 3 ∗ LM1

2 + LM2 ∗ LM1

2 + LM1

2 + 5

2 + (5)

2 + LM1 ∗ (5)

2 + 3 ∗ (5)

2 + 3 ∗ (5 + LM1)

1-step n-step

Figure: 1-step vs. n-step FAR detection
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The fill-and-resume (FAR) optimization

Detecting a valid fill operation

Structural diff algorithm Intuitive, fast n-step FAR detection;
find the smallest hole that subsumes the diff root

λx .LM3 −→ λx .4

u = 3

d = 4

2 + Lλx .3M1 −→ 2 + 5 ∗ LM1

u = 1

d = 5 ∗ LM1
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The fill-and-resume (FAR) optimization

The fill and resume operations

The fill operation

Mark closures un-final
[JσKd/[σ]d ]dresult

Fill hole instances
[dfill/LMufill ]dresult

The resume operation

Evaluate as normal, except:

Re-evaluate closures
JσKd ⇓ [σ′]d ′
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The fill-and-resume (FAR) optimization

Proposed updates to the evaluation model

ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α

Program.t

e

duneval

deval

deval

drenumbered ,H

Figure: Previous evaluation model
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The fill-and-resume (FAR) optimization

Proposed updates to the evaluation model

ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

DHExpDiff.diff_dhexp

FillAndResume.preprocess

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α
Program.t

e

duneval

no fill diff

u, d

dpreprocess

deval

deval

dpostprocess ,H

list(Program.t)

Figure: Proposed evaluation model
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Empirical results
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Empirical results

Evaluation with environments

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

(a) Source

22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0

n

103

3× 102

4× 102

6× 102

2× 103

T
im

e
(m

s)

dev

e-e

(b) Performance

Figure: A computationally expensive Hazel program with no holes
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Empirical results

Evaluation with environments

let a = 0 in

let b = 0 in

let c = 0 in

let d = 0 in

let e = 0 in

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

(a) Source
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e-e n= 22
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e-e n= 25

e-e n= 26

(b) Performance

Figure: Adding global bindings to the fib(n) program
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Empirical results

Evaluation with environments

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

| 0 ⇒ f 0 + f 0 + f 0 + f 0 + f 0

end

} in

f 25

(a) Source

0 2 4 6 8 10

Variables in unused branch
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(b) Performance

Figure: Adding variable substitutions to unused branches
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Empirical results

Hole numbering motivating example

let a = LM1 in

let b = LM2 in

let c = LM3 in

let d = LM4 in

let e = LM5 in

let f = LM6 in

let g = LM7 in

...

let x = LMn in

LMn+1

Figure: A Hazel program that generates 2N total hole instances
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Empirical results

Hole numbering motivating example

0 5 10 15 20 25

Number of holes
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(a) dev branch

0 5 10 15 20 25

Number of holes
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T
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e
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evaluate

postprocessing

equality check

overall

(b) eval-environment branch

Figure: Performance of evaluating program in Figure 14
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Empirical results

FAR motivating example

Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

let f = ... in

let a = LM1 in

LM2

7 - 0 0

let f = ... in

let a = f in

LM2

12 21 9 9

let f = ... in

let a = f LM3 in

LM2

17 - 0 9

let f = ... in

let a = f 2 in

LM2

58 69 11 20

Table: A program edit history with an expensive computation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 39 / 47



Empirical results

FAR motivating example

Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

let f = ... in

let a = f 25 in

LM2

4762964 - 0 20

let f = ... in

let a = f 25 in

LM2 + LM4

4762966 12 -4762954 -4762934

let f = ... in

let a = f 25 in

LM2 + 2

4762966 21 -4762954 -9525879

let f = ... in

let a = f 25 in

a + 2

4792967 13 -4792954 -14288813

Table: A program edit history with an expensive computation, cont’d.
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Empirical results

FAR motivating example
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(b) With one-step FAR

Figure: Number of evaluation steps per edit in Table 2
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Discussion and conclusions
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Discussion and conclusions

Innovations of this work

Generalized closures Useful for evaluation and memoization

Unique hole closures Grouping hole instances by environment

FAR as a generalization of evaluation Each edit is a n-step FAR
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Discussion and conclusions

Metatheory

Invariants of the evaluation steps; informally justified

Preservation

Evaluation boundary

Singular evaluation boundary

Substitution postprocessing closures

Evaluation with environments correctness

Hole numbering postprocessing

Fill operation

Resume operation

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 44 / 47



Discussion and conclusions

Future work

Fully automatic FAR Integrate FAR into the Hazel MVC model

n-step FAR Integrate edit history into FAR

Formal evaluation of metatheory Check coverage and correctness of
metatheorems using Agda

User editing studies Gather data on “true” performance impact

Lam (Cooper Union) Hazel evaluation improvements Spring 2022 45 / 47



Discussion and conclusions

Conclusions

Evaluation with environments Expected performance gains,
implementation remains functionally pure

Generalized closures Simplify many parts of the implementation, also
useful for FAR

Memoization of environments Applicable for postprocessing, equality
checking, resume operation

FAR PoC Including n-step detection, re-evaluation of closures

Plausible metatheory For future work in Agda
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Discussion and conclusions
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