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ABSTRACT

Hazel is a live programming environment with typed holes that serves as a reference imple-

mentation of the Hazelnut Live dynamic semantics [1] and the Hazelnut static semantics [2],

both of which tackle the “gap problem.” This work attempts to further develop the Hazelnut

Live dynamic semantics by implementing the environment model of evaluation (as opposed

to the current substitution model) and memoizing several evaluation-related operations to

improve performance. Additionally, we provide an implementation-level description and a

reference implementation of the fill-and-resume (FAR) performance optimization proposed

in Hazelnut Live. We produce a metatheory and reference implementation of the proposed

changes. Our implementation is benchmarked against the existing Hazel implementation

to show that the results match expectations, although there is room for future improve-

ment with the development with memoization. Finally, we discuss some useful theoretical

generalizations that result from this work.
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Chapter 1

Introduction

1.1 Problem statement

Unstructured plaintext editing has remained the dominant mode of programming for decades,

but lack of structure complicates the implemention of editor services to aid the programming

process. Structural editors force a program to be syntactically well-formed, thus eliminating

many meaningless program states that are difficult to analyze. Several structural editors,

such as Scratch [4], Lamdu [5], and mbeddr [6], have been proposed to improve the pro-

gramming experience and improve editor services, such as the elimination of syntax errors

or graphical editing.

Hazel [7] is an experimental structural language definition and implementation that aims

to solve the “gap problem”: spatial and temporal holes that temporarily prevent code from

being able to be compiled or evaluated. In addition to the use of a structural editor to elimate

syntax errors, Hazel also eliminates static type errors and dynamic runtime errors so that

all program states are meaningful and amenable to editor services. The structural editor is

defined by the bidirectional edit calculus Hazelnut [1], which governs the structural editor

and the static semantics (typing rules) of the language. The dynamic semantics (evaluation

semantics) are defined by Hazelnut Live [2].

1
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Figure 1.1: A screenshot of the Hazel live programming environment. Screenshot taken of
the dev branch demo on 02/06/2022 [3].

Hazel is a relatively new research effort by the University of Michigan’s Future of Pro-

gramming Lab (FPLab), with little effort placed on performance optimizations. This work

attempts to achieve several enhancements to Hazelnut Live that will benefit the perfor-

mance of evaluation and related tasks. Part of the work will be focused on transitioning the

evaluation model from using substitution for variable bindings to using environments, with

emphasis on evaluation of holes and postprocessing of the evaluation result to match the re-

sult from evaluation with substitution. The latter parts of this work will use the environment

model of evaluation to improve the memoization of certain tasks specific to Hazel (such as

hole closure numbering), and also implement the fill-and-resume performance enhancement

described in [2]. The novelty of this work lies in the optimization capacity in the unique

design of the Hazel language as a live programming editor with expression holes.

1.2 The contribution of this work

This thesis presents several algorithms designed for Hazel’s evaluation. These algorithms are

provided using the big-step inference semantics notation introduced in section 2.1.2.

Firstly, we provide the evaluation semantics of the Hazel language using the environment

model. We aim to keep the implementation pure, introduce uniquely-numbered environments
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(for later use in memoization), and describe the evaluation of holes (which are unique to

Hazel). We introduce the concepts of generalized closures, and the evaluation boundary.

Secondly, we describe the postprocessing algorithm, which is mostly memoized by envi-

ronments and has the two major functions. The first is to convert the result to the equivalent

result if substitution was used. The second is to number hole closure instances.

Lastly, we develop the fill-and-resume process, as originally proposed (but not imple-

mented) in [2]. We provide a possible implementation, including an algorithm to detect a

valid fill operation and advice on memoizing the resumption operation.

The performance of this work is measured primarily in terms of empirical performance

gains (via evaluation-step counting and benchmarking), and discussed with respect to the

theoretical performance. Hazelnut [1] and Hazelnut Live [2] mechanize proofs of their work

using the Agda interactive proof checker. We do not provide mechanized proofs of our work;

instead, we provide a series of metatheorems describing invariants of the Hazel evaluation

process, and argue the correctness of these metatheorems by informal reasoning on the

provided inference rules. A mechanized proof using Agda is deferred for future work.

1.3 Structural overview

Chapter 2 provides a background on necessary topics in programming language (PL) theory

and programming language implementations, in order to frame the understanding for the

Hazel live programming environment. Chapter 3 provides an overview of Hazel, in order to

frame the work completed for this thesis project. Chapters 4 to 6 describe the primary work

completed for this project, as described in Section 1.2. Chapter 7 comprises an emprical

performance assessment of the work. Chapter 8 is a discussion of theoretical results. Chap-

ter 9 describes unfinished work and future research directions. Chapter 10 concludes with

a summary of findings and future work. The Appendices contain extra inference rules and

selected source code snippets.



Chapter 2

Programming language principles

This chapter is intended to provide a primer to the theory of functional programming and

programming languages, as relevant to this work on Hazel. The work performed for this

thesis is concerned with the dynamic semantics of Hazel.

Section 2.1 is concerned with explaining the notation used throughout this paper to de-

scribe formal systems. Section 2.2 is a brief introduction to functional programming and

the λ-calculus. A more in-depth explanation of the λ-calculus foundations is given in Ap-

pendix A. Section 2.3 provides some detail on different types of programming language im-

plementations relevant to Hazel. In particular, this section sheds some light on the rationale

behind switching from an evaluation model based on substitution to an evaluation model

based on environments, which forms the basis for a large part of this thesis. Section 2.4

provides an overview of relevant topics in programming language interfaces.

2.1 Specifications of programming languages

Languages are interfaces used for effective communication. Programming languages serve

as the interface between programmer and computer. To be able to rigorously work with

programming languages, as with any mathematical activity, we need to precisely define their

behavior. The definition (or specification) of a programming language is typically given as

4
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τ ::= τ → τ | num | LM
e ::= x | λx.e | e e | e+ e | e : τ | LM | LeM

Figure 2.1: A sample grammar

the combination of its syntax and semantics, which will be discussed below.

Note that the specification of a programming language is orthogonal to its implementa-

tion(s); a programming language may have several implementations, which may have dif-

fering support for language features and different performance characteristics. Common

classifications of programming language implementations are discussed in section 2.3.1.

2.1.1 Syntax

The syntax of a programming language is defined by a grammar. The grammar described

in Hazelnut [1] is reproduced in Figure 2.1 as an example.

In this simple grammar, we have two productions: types and expressions. A type may

have one of three forms: the num type, an arrow (function) type, or the hole type (similar to

the ∗ type from the GTLC described in Appendix A.3). An expression may be a variable,

a λ-abstraction1, a primitive binary operation, a type ascription, an empty hole, or a non-

empty hole. Hole expressions and the hole type are specific to Hazel. Parentheses are not

shown in this grammar; they are optional except to specify order of operations.

Parts of this grammar will be revisited when discussing the λ-calculus described in Ap-

pendix A.1, and when discussing Hazel’s grammar described in Chapter 3. In particular, this

Hazelnut grammar is a superset of the grammar of the GTLC described in Appendix A.3,

and a subset of the grammar in the implementation of Hazel, which includes additional forms

such as let, case, and pair expressions. Some of these forms will be important cases for our

1This may have several names depending on the context and programming language, such as: λ-function,
function literal, arrow function, anonymous function, or simply function. λ-abstractions are unary by
definition – higher-arity functions may be constructed via function currying.
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p1 p2 . . . pn

q
RuleName

Figure 2.2: Notation for an inference rule

study of evaluation.

Due to Hazelnut being a structural edit calculus (as described in section 2.4.1), there is

no need to worry about syntax errors. The syntax describes the external language of Hazel,

which will be translated into the internal language via the elaboration algorithm prior to

evaluation.

2.1.2 Notation for semantics

In formal logic, a standard notation for rules of inference is shown in Figure 2.2. p1, p2, . . . , pn

are the antecedents (alternatively, premises) and q is the single consequent (alternatively,

conclusion). Each of p1, p2, . . . , pn, q is a judgment (alternatively, proposition or statement).

We may pronounce this rule as “if all of p1, p2, . . . , pn are true, then q must be true.” Note

that the antecedent of the rule is the logical conjunction of the antecedants
∧n

i=1 pi. The

logical disjunction of antecedants
∨n

i=1 pi is expressed by writing separate rules with the

same consequent. A rule with zero premises is an axiom, i.e., the conclusion is vacuously

true. We may build up a formal logic system from a set of inference rules. Note that the set

of judgments that form the premises of a rule, as well as the set of rules in a formal system,

are both unordered; however, any computer program that carries out these judgments must

choose some order in which to evaluate the set of antecedents or the order in which to

evaluate a set of equally-viable rules.

Each new judgment form will be introduced annotated with the modes of each term.

For example, the typing judgment Γ− ⊢ e− : τ+ indicates that Γ and e are inputs to the

judgment and τ is an output of the judgment. If there are no terms with output mode in a

judgment, then the ability to logically construct the judgment is its sole (boolean) output.
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A derivation (proof) of a judgment is shown by chaining inference rules, such that the

final consequent is the statement to be proved. We may visualize a derivation as a tree

rooted at the judgment to be proved, and whose children are (recursively) the antecedent

judgments; the leaf nodes of this tree must be axioms.

To ensure that the system of inference rules covers the entire semantics of a language,

that rules do not conflict, and that rules give the language the desired behavior, we es-

tablish metatheorems. Metatheorems are intuitive, high-level invariants or properties that

describe the behavior of the overall system. We prove the correctness of an implementation

by proving that the metatheorems are upheld by the inference rules. In the foundational

papers for Hazel’s core semantics [1, 2], metatheorems are amply used to justify and verify

the correctness of the rules. Agda [8], an interactive proof checker and dependently-typed

programming language, is used to mechanize these proofs [9, 10].

2.1.3 Static semantics

The static semantics of a programming language describes properties of a program that can

be checked prior to program evaluation. Static semantics typically refers to type checking.

In Hazelnut Live, we have the process of elaboration that transforms the external language

(a program expressed in the syntax of Hazel) to the internal language (an intermediate rep-

resentation more amenable to evaluation), which occurs before evaluation and incorporates

the type checking rules. Elaboration and the internal language will be discussed further in

section 2.3.1. The type checking and elaboration algorithms form the static semantics of

Hazel.

It is formative to provide an overview of type checking. While the static semantics is

not very important to the core work in this thesis, a fundamental understanding is key to

understanding the motivation and bidirectionally-typed action calculus underlying Hazel, as

well as understanding the formulation of gradual typing described in Appendix A.3.

The typing judgment Γ− ⊢ e− : τ+ states that, with respect to the typing context Γ,
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Γ ⊢ n : num
TNum

Γ, x : τ ⊢ x : τ
TVar

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ (λx : τ1.e) : τ1 → τ2
TAnnArr

Γ ⊢ e2 : τ1 Γ ⊢ e1 : τ1 → τ2

Γ ⊢ e1 e2 : τ2
TAp

Figure 2.3: Sample typing rules

the expression e is well-typed with type τ . The typing context is a set of variable typing

judgments {x : τ}. A few sample typing judgments are shown in Figure 2.3.

There are a few noteworthy items here. The syntax Γ, x : τ indicates the typing context

Γ extended with the binding x : τ . Thus, when this notation is part of the consequent, it

means that we are stating the typing judgment with respect to a different typing context

Γ′ = Γ, x : τ . The type of a number is always num. The type of a variable may only be

determined if its type exists in the typing context (which, according to this limited set of

rules, may only be extended during a function application). Lambda expressions can only

be typed if they are fully-annotated: i.e., if the argument’s type is annotated and the body

is also assigned a type. This example typing system is very minimal and not practical for

larger systems: every λ-abstraction would have to be typed for the entire expression to be

well-typed. Consider even the simple example (λx.x) 2, which cannot be typed according to

the simple system above due to the unannotated λ-abstraction.

A type system that allows for fewer type annotations, while remaining reasonably simple

to formulate and implement, is bidirectional typing [11, 12, 13], or local type inference. Bidi-

rectional typing involves two typing judgments: the synthetic type judgment Γ− ⊢ e− ⇒ τ+

(pronounced “given typing context Γ, expression e synthesizes type τ), and the analytic type

judgment Γ− ⊢ e− ⇐ τ− (pronounced “given typing context Γ, expression e analyzes against

type τ). The synthetic type judgment outputs a type (the exact or “narrowest” type of the

expression), whereas the analytic type judgment takes a type as an input and “checks” the
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Γ ⊢ n⇒ num
TSynNum

Γ, x : τ ⊢ x⇒ τ
TSynVar

Γ, x : τ1 ⊢ e⇒ τ2

Γ ⊢ (λx : τ1.e)⇒ τ1 → τ2
TSynAnnArr

Γ ⊢ e2 ⇒ τ1 Γ ⊢ e1 ⇐ τ1 → τ2

Γ ⊢ e1 e2 ⇒ τ2
TSynAp

Γ, x : τ1 ⊢ e⇐ τ2

Γ ⊢ λx.e⇐ τ1 → τ2
TAnaArr

Γ ⊢ e⇒ τ

Γ ⊢ e⇐ τ
TAnaSubsume

Figure 2.4: Simple bidirectional type system

expression against that (“wider”) type. With these two judgments, we loosen the antecedant

judgments when synthesizing a type. We re-express the above type assignment system into

a similar bidirectional type system, shown in Figure 2.4.

Now, we may synthesize the type of (λx.x) 2; the derivation uses all of the rules above.

Note the presence of the last rule; subsumption states that an expression analyzes against

its synthesized type, which should fit the earlier intuition of type synthesis producing the

“narrowest” type and type analysis checking against a “wider” type. Subsumption allows us

to avoid manually writing type analysis rules for most types.

Algorithmically, bidirectional typing begins by synthesizing the type of the top-level ex-

pression; if it successfully synthesizes, then the expression is well-typed. A more complete

discussion of bidirectional typing is left to Dunfield [11], who provides an overview of bidi-

rectional typing, or to the formulation of Hazelnut’s bidirectional typing. Hazelnut is at its

core a bidirectionally-typed “edit calculus” [1], citing the balance of usability and simplicity

of implementation.

The elaboration algorithm is bidirectionally-typed and fairly specific to Hazel and de-

scribed in section 3.3.4. It is based off of the cast calculus from the GTLC.

More advanced type inference algorithms such as type unification are used in the highly

advanced type systems of languages such as Haskell [14], and are out of scope for this work.
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e1 → e′1
e1 + e2 → e′1 + e2

EPlus1-Small
e2 → e′2

n1 + e2 → n1 + e′2
EPlus2-Small

n1 + n2 → n1 + n2

EPlus3-Small

Figure 2.5: Small-step dynamic semantics for addition

2.1.4 Dynamic semantics

The dynamic semantics (alternatively, evaluation semantics) of a programming language

describes the evaluation process. Evaluation is the algorithmic reduction of an expression to

a value, an irreducible expression.

The style of rules that are used to define the dynamic semantics of a programming

language are called operational semantics, because they model the operation of a computer

when compiling or evaluating a programming language. There are two major styles of

operational semantics.

The first of these styles is structural operational semantics as introduced by Plotkin [15]

(alternatively, small-step semantics). In the small-step semantics, the evaluation judgment

is e−1 → e+2 , where e1 and e2 are expressions in the language.

For example, let us describe the dynamic semantics of an addition operation using a

small-step semantics. This is described using the three rules shown in Figure 2.5.

The algorithm carries itself out as follows: while e1 is reducible, reduce it using some

applicable evaluation rule. Once e1 becomes a value, the first rule is no longer applicable

(as e1 cannot further reduce) and e2 reduces until it too is a value. Finally, the third rule is

applicable, and reduces the expression down to a single number literal. Note that if either

e1 or e2 do not reduce down to a number literal, then the expression will not evaluate fully;

this kind of failure cannot happen in a strongly-typed language due to typing rules.

The second of these styles is natural operational semantics as introduced by Kahn [16]
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e1 ⇓ n1 e2 ⇓ n2

e1 + e2 ⇓ n1 + n2

EPlus-B

Figure 2.6: Big-step dynamic semantics for addition

λx.e value
VLam

Figure 2.7: Values in Λ

(alternatively, big-step semantics). In the big-step semantics, the evaluation judgment is

e− ⇓ v+, where e is an expression in the language, and v value.

To express the evaluation of addition in the big-step semantics, we need only a single

rule, shown in Figure 2.6. In this case, the antecedants indicate that the subexpressions

must be recursively evaluated, but (as noted earlier) this notably doesn’t specify the order

of evaluation of the antecedants, unlike the small-step notation.

In the big-step notation, values are distinguished by the judgment v ⇓ v; i.e., values

evaluate to themselves. In the small-step notation, there will be no applicable rule to further

reduce a value. Following the notation from [1, 2], we can alternatively write this using the

equivalent judgment v− value. In the stereotypical untyped λ-calculus, the only values are

λ-abstractions. We can denote this using the axiom in Figure 2.7.

In Hazel, we have other base types such as integers, floats, and booleans, which also have

axiomatic value judgments. For composite data such as pairs or injections (binary sum type

constructors), the expression is a value iff its subexpression(s) are values.

The implementation of an evaluator with a program stepper capability (as is commonly

found in debugger tools) is more amenable to implementation using a small-step operational

semantics, since it precisely details the order of sub-reductions when evaluating an expres-

sion. The evaluation semantics of Hazelnut Live are originally described using a small-step
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semantics in [2]. To simplify the rules, the concept of an evaluation context E is used to

recurse through subexpressions.

The big-step semantics is often simpler because it involves fewer rules, and is more efficient

to implement. As a result, the implementation of evaluation in Hazel more closely follows

the big-step semantics, and it is the notation used predominantly throughout this work.

2.2 Introduction to functional programming and the

λ-calculus

To understand this work on extending Hazel’s dynamic semantics, one must have a satis-

factory understanding of Hazel. Understanding Hazel requires some understanding of the

functional programming paradigm, as Hazel is a stereotypical functional language.

Functional programming [17] is a programming paradigm that is highly involved with

function application, function composition, and first-class functions. It is a subclass of the

declarative programming paradigm, which is concerned with pure2 expression-based com-

putation. Declarative programming is often considered the complement of imperative pro-

gramming, which may be characterized as programming with mutable state, side effects,

or statements. Purely functional programming is a subset of functional programming that

deals solely with pure functions; non-pure languages may allow varying degrees of mutable

state but typically encourage the use of pure functions.

Functional languages are based on Alonzo Church’s λ calculus [18] as its core evaluation

and typing semantics, which provides a minimal foundation for computation. The syntax of

functional programming languages is based off the λ calculus. This, along with the lack of

mutable state and side effects, allows functional programming to be easily mathematically

modeled and reasoned about, making it particularly amenable to proofs about programming

languages. This is as opposed to in imperative programming, in which the mutable “memory

2“Pure” in the sense of a pure function, i.e., without mutable state or side-effects.
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cell” interpretation of variables and side-effects complicates formalizations. A number of

programming languages incorporate both functional and imperative language features, such

as Hazel’s implementation language OCaml [19]. These languages are classified as multi-

paradigm programming languages.

Hazelnut’s core calculus is heavily based on the gradually-typed λ-calculus (GTLC) in-

troduced by Siek [20, 21]. This itself is an extension of the simply-typed λ-calculus (STLC),

which is an extension of the untyped λ-calculus (ULC), the simplest implementation of

Church’s λ-calculus. The STLC, the untyped λ-calculus, and Church’s λ-calculus are stan-

dard textbook material in programming language theory [18]. We provide a brief self-

contained introduction to these formalizations in Appendix A. This will form the foun-

dational understanding for the study of dynamic semantics in this work, as well as a general

understanding of Hazel.

2.3 Implementations of programming languages

In order to run programs in a programming language on a computer, we must have an

implementation of the language. Hazel is implemented as an interpreted language, whose

runtime is transpiled to Javascript so that it may be run as a client-side web application in

the browser.

It is important to note that the definition of a language (its syntax and semantics) are

largely orthogonal to its implementation. In other words, a programming language does

not dictate whether it requires a compiler or interpreter implementation, and languages

sometimes have multiple implementations.

2.3.1 Compiler vs. interpreter implementations

There are two general classes of programming language implementations: interpreters and

compilers [22]. Both types of implementations share the function of taking a program as
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input, and should be able to produce the same evaluation result (assuming an equal and de-

terminstic machine state, equal inputs, correct implementations, and no exceptional behavior

due to differences in resource usage).

A compiler is a programming language implementation that converts the program to

some low-level representation that is natively executable on the hardware architecture (e.g.,

x86-64 assembly for most modern personal computers, or the virtualized JVM architecture)

before evaluation. This process typically comprises lexing (breaking down into atomic tokens)

the program text, parsing the lexed tokens into a suitable intermediate representation (IR)

such as LLVM, performing optimization passes on the intermediate representation, and then

generating the target bytecode (such as x86-64 assembly) [22]. The bytecode outputted

from the compilation process is used for evaluation. Compiled implementations tend to

produce better runtime efficiency, since the compilation steps are performed separate of the

evaluation, and because there is little to no runtime overhead.

An interpreter is a programming language implementation that does not compile down to

native bytecode, and thus requires an interpreter or runtime, which performs the evaluation.

Interpreters still require lexing and parsing, and may have any number of optimization stages,

but do not generate bytecode for the native machine, instead evaluating the program directly.

The term elaboration [23] may be used to describe the process of transforming the external

language (a well-formed, textual program) into the internal language. The internal language

may include additional information not present in the external language, such as types

generated by type inference or bidirectional typing.

The distinction between compiled and interpreted languages is sometimes ambiguous:

some implementations feature just-in-time (JIT) compilation that allow “on-the-fly” com-

pilation (e.g., common implementations of the JVM and CLR [24]), and some implemen-

tations may perform the lexing and parsing separately to generate a non-native bytecode

representation to be later evaluated by a runtime. A general characterization of compiled vs.

interpreted languages is the amount of runtime overhead required by the implementation.
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Hazel is a purely interpreted language implementation, since optimizations for speed are

not among its main concerns. However, performance is clearly one of the main concerns of

this thesis project, but the gains will be algorithmic and use the nature of Hazel’s structural

editing and hole calculus to benefit performance, rather than changing the fundamental im-

plementation. However, an environment-based evaluation model as described in section 2.3.2

may be helpful in implementing a compiled Hazel implementation.

2.3.2 The substitution and environment models of evaluation

This section describes two methods to evaluate a variable binding. In the λ-calculus, variables

are bound during function application. They are also bound in Hazel using let or case

expressions.

Evaluation of variable bindings in Hazel is formulated and implemented using the substi-

tution model. In this model, when a variable is bound, each instance of the variable in the

scope of the binding is immediately substituted by the definiens. This is a simple theoretical

model for let bindings and function application. This is useful for teaching purposes and

simple to formulate because it is stateless.

However, for the purpose of computational efficiency, a model in which bound values are

lazily expanded (“looked-up”) in some runtime environment only when needed is desirable.

This is called the environment model, and generally is more efficient because the runtime does

not need to perform an extra substitution pass over subexpressions and because untraversed

(unevaluated) branches do not require substituting. Also, the runtime does not need to

carry an expression-level IR of the language, due to the fact that the substitution model

manipulates expressions, while evaluation does not. This means that the latter is more

amenable for compilation, and is how compiled languages tend to be implemented: each

frame of the theoretical stack frame is a de facto environment frame. While switching from

the substitution to environment model is not an improvement in asymptotic efficency, these

effects are useful especially for high-performance and compiled languages.
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Note that the use of substitution or environments for the eager and lazy evaluation of

variable bindings is orthogonal to strict (applicative-order) or lazy (normal-order) evaluation

of function arguments [25]. Laziness for efficiency is a pervasive concept in programming

languages.

2.4 Approaches to programming interfaces

The most traditional programming interface is the text source file. In this case, we describe

two innovations on plaintext files that are relevant to Hazel’s design and use cases.

2.4.1 Structure editors

Structure editors form a class of programming language editors that allow one to directly

interface with the abstract syntax tree of a programming language via a restricted set of edit

actions, rather than via the manipulation of unstructured plaintext. An immediate benefit

of this is the elimination of the entire class of errors related to syntax.

A major use case for structural editing is for the purpose of programming education. By

eliminating syntactic errors, the student may shift their attention towards semantic issues in

their code. For example, Carnegie Mellon University developed a series of structural editors

(GNOME, MacGnome, and ACSE) targeted at programming education [26]. Scratch is a

graphical structural editor targeted at younger students (aged 8-16) developed at MIT [4].

Programming education is one of the main proposed use cases for Hazel, such as its use in

Hazel Tutor [27].

Structure editors are not limited to programming education. mbeddr is a structure editor

for embedded programming [6], and Lamdu is a structure editor for a Haskell-like functional

programming language [5].

One of the major drawbacks of structural editing is the decrease in usability by restricting

the set of edit actions. The degree to which an editor “resists local changes” is a property
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known as viscosity [28]. Structural and visual editing is expectedly more viscous than un-

structured plaintext editing. Reducing the viscosity of structural editing is not a goal of

Hazel, but a related project at the University of Michigan, Tylr [29], tackles the problem of

editing viscosity and may make its way into future versions of Hazel.

Omar et al. [1] describes several other structure editors and their relation to Hazel, and in

particular other structure editors which also attempt to maintain well-typedness or operate

on formal definitions of an underlying language.

2.4.2 Live programming environments and computational note-

books

Burckhardt et al. describes live programming environments as providing continuous feedback

that narrows the “temporal and perceptive gap between program development and code

execution” [30]. A common example of a live programming environment are read-evaluate-

print loops (REPLs), which allow line-by-line evaluation of expressions. Computational

notebooks form an example of live programming environments.

Computational notebooks, such as in IPython/Jupyter Notebook [31] or MATLAB, is

another trend in programming languages that has been popular in scientific applications.

They provide much feedback about program’s dynamic state, especially interactively or

graphically. Notebook-style editing allows one to intersperse editing and evaluation of a

program. Programs may be run in sections (potentially out of order), maintaining state

between sections evaluations – this is typically for efficiency reasons. There is a large design

space in current computational notebooks, with many possible variations in code evaluation,

editing semantics, and displaying notebook outputs [32].

Hazel may be considered a live editor as it attempts to eliminate the feedback gap, by

providing static and dynamic feedback throughout the lifetime of then program. The fill-and-

resume functionality described in [2] and implemented in this work provide a novel possible

implementation of notebook-like partial evaluation.
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An overview of the Hazel

programming environment

Hazel is the reference implementation for the Hazelnut bidirectionally-typed action seman-

tics and the Hazelnut Live dynamic semantics, both of which are intended to mitigate the

gap problem. Hazel is intended to serve as a proof-of-concept of these underlying calculi,

but recent editions of the implementation are becoming increasingly practical. The refer-

ence implementation is an interpreter written in OCaml and transpiled to Javascript using

the js_of_ocaml (JSOO) library [33] so that it may be run client-side in the browser. A

screenshot of the reference implementation is shown in Figure 1.1 [3]. The source code may

be found on GitHub [7]. Hazel may be characterized as a purely functional, statically-typed,

bidirectionally-typed, strict-order evaluation, structured editor programming language.

3.1 Motivation for Hazel

3.1.1 The gap problem

Programming editor environments aim to provide feedback to a programmer in the form of

editor services such as syntax highlighting or language server protocol (LSP) warnings. Live

18
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programming environments aim to provide continuous static (static type error) and dynamic

(run-time type error) feedback in real-time, allowing for rapid prototyping. However, over

the course of the lifetime of a program, the program may enter many edit states when it is

meaningless (ill-formed or ill-typed).

Editor services can only assign static and dynamic meaning to programs that are statically

well-typed and free of dynamic type errors. Some may deploy reduced ad hoc algorithms

for meaningless edit states. This means that over the course of editing, the programmer

experiences temporal gaps between moments of complete editor services. This is known as

the gap problem [30, 2].

3.1.2 An intuitive introduction to typed expression holes

Hazelnut and Hazelnut Live address the gap problem by defining the static and dynamic

semantics, respectively, for a small functional programming language extended with typed

expression holes. It is built on top of a structure editor, which ensures that a program is

always well-formed (syntactically correct) by disallowing invalid edit actions. The Hazelnut

action semantics for typed holes ensures that a well-formed program is always well-typed.

The Hazelnut Live dynamic semantics defines an encapsulated behavior for type errors, such

that evaluation continues “around” and captures information about type errors in order to

provide dynamic feedback to the programmer.

The Hazelnut Live paper provides the following intuitive understanding of holes.

Empty holes stand for missing expressions or types, and non-empty holes operate

as “membranes” around static type inconsistencies (i.e. they internalize the “red

underline” that editors commonly display under a type inconsistency).

We have already acknowledged the existence of type holes in dynamically-typed languages

and in the Λ⟨τ⟩
→ , in which type holes are represented by the type ∗. This allows unannotated

expressions to statically type-check, with the possibility of running into a dynamic type error
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at runtime.

Some languages also have the concept of expression holes, which allow a program to

be well-typed with missing expressions. In Haskell, for example, the special error value

undefined always type-checks but will immediately crash the program if it is encountered

during evaluation. Haskell also provides the syntax _u for typed expression holes, which

provides static type information but will not compile1. Hazelnut Live is the first example

of a dynamic semantics that does not consider the evaluation of holes as an exceptional

behavior that would crash the program.

In summary, Hazel provides empty type and expression holes, which represent dynamic

typing and missing expressions. Nonempty holes are also provided to encapsulate error con-

ditions and provide a well-defined dynamic semantics while providing useful feedback to the

user. The dynamic semantics is carefully defined to stop when such indeterminate expres-

sions are encountered, but continue elsewhere (“around” holes or failed casts) if possible.

3.1.3 The Hazel interface

In Figure 3.1 the web interface for the Hazel live environment is shown. The left panel marked

(1) is a informational panel showing the list of keyboard shortcuts to perform structured edit

actions. Since Hazel is a structured editor, simply typing the program as plaintext will not

work; one must use the appropriate shortcuts the construct and edit the program. (2) is

the code view. Below the code, a gray box indicates the result of evaluating the expression.

The program result updates in real time with every edit action. (3) is the context inspector,

which shows information about a hole if a hole is selected. It shows the hole environment,

the hole’s typing context (static feedback), the values of the variables in scope (dynamic

feedback), followed by the path to the hole and the number of hole instances. In this case,

the third hole in the result is selected, in which x has value 3. Lastly, (4) shows a history of

the edit actions. Clicking on a past edit state will revert the program to that edit state.

1We may force this to compile using the -fdefer-type-errors flag, but then holes will crash when encoun-
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Figure 3.1: The Hazel interface, annotated

3.1.4 Implications of Hazel

The main proposed use case of Hazel is its use in programming education, particularly for

teaching functional programming, as it provides much useful feedback to the programmer

for error conditions, allowing them to focus instead on semantic errors in their algorithm.

This is being explored with the Hazel Tutor project [27].

Another research direction is in its use as a structural and graphical editor. For ex-

ample, live GUIs [34] are being explored to enhance the editing experience by providing

live, compositional, graphical interfaces, in addition to the benefits that Hazel’s core calculi

provide.

The result of a Hazel evaluation may contain holes. The Hazelnut Live paper [2] suggests

the idea of hole-filling: since each hole in the result contains stores its runtime environment,

we may “resume” evaluation without restarting evaluation from the beginning if a hole is

filled – this property is similar to that of computational notebooks. The problem with typical

tered during evaluation similar to undefined.
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notebook execution is that it is stateful and running operations out-of-order may cause

irreversible state changes that cause irreproducible results. On the other hand, resuming an

evalution with fill-and-resume will always produce the same result as if the program was run

ordinarily from start to finish2 while avoiding re-evaluation of previous sections.

3.2 Introduction to OCaml and Reason syntax

Previously, we have been introducing concepts using a pseudo-mathematical notation. When

describing Hazel and its implementation, it may be useful to use sample code or pseudocode

from the implementation to describe various aspects of Hazel.

Hazel is implemented in Reason (alternatively, ReasonML), which is a dialect of OCaml

that offers a JavaScript-like syntax. The Reason code used in this report will be limited

to function names and types. Module names are denoted PascalCase, whereas function

and type names are snake case. Conventionally, OCaml modules that export a type ex-

port a single type called t. As an example, DHExp.t refers to the primarily-relevant type

from the DHExp module, the type that represents internal expressions d. On the other hand,

Evaluator.evaluate refers to the evaluate function in the Evaluator module. All func-

tions and types will be fully-qualified (prefixed with their module names) for maximum

clarity.

3.3 Hazelnut semantics

A high-level overview of the foundational papers on Hazelnut syntax and static semantics

and Hazelnut Live elaboration and dynamic semantics is provided here, but a thorough

explanation is deferred to the original descriptions [1, 2].

2This is a property known as commutativity and described in [2].
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τ ::= τ → τ | b | LM
e ::= c | x | λx : τ.e | e e | e : τ | LM | LeM

Figure 3.2: Hazelnut syntax

3.3.1 Hazelnut syntax

The grammar of Hazelnut’s external language is reproduced in Figure 3.2. This is very similar

to Λ?
→. The ∗ type is rewritten as LM and pronounced the “hole type.” An expression form

for type ascription is added. Most notably, there is the addition of empty and non-empty

expression holes, which are denoted LM and LeM, respectively.

3.3.2 Hazelnut typing and action semantics

Hazelnut [1] defines a bidirectional typing judgment for the external language. The judg-

ments are very similar to Λ?
→. Unsurprisingly, hole expressions synthesize the hole type, and

they analyze against any type. Note that in the case of a non-empty hole, the encapsulated

expression must still synthesize a type, i.e., they are well-typed.

Hazelnut defines an action semantics for the structural editor, which describes the be-

havior of editing and maneuvering around a program. For example, the action semantics

automatically add non-empty holes around type errors so that a program is always well-

typed. A program’s edit state comprises an external expression with a superimposed cursor.

There are four main actions carried out by the user: move, construct, and delete. These

actions are described by bidirectionally-typed action judgments that transform a (well-typed)

edit state to another (well-typed) edit state. There are a number of metatheorems that en-

force desirable properties of action semantics in a structural editor, such as sensibility (the

result of an action on a well-typed expression is a well-typed expression), movement erase

invariance (movement actions should not change the external expression, but only the po-

sition of the cursor), reachability (the cursor should be able to move to any valid location
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to any other valid location), constructability (every valid edit state should be constructable

from the initial edit state), action determinism (every sequence of edit actions should have

only one valid output state), etc. These metatheorems are proved using the Agda theorem

proving assistant [9].

The typing and action semantics rules will not be reproduced here, as this work does not

concern the static semantics.

3.3.3 Hazelnut Live elaboration judgment

Elaboration is the process of converting an expression from the external language to the

internal language. Notably, both the external and internal languages share the same type

system. The internal language and the elaboration process is very similar to the cast calculus

Λ⟨τ⟩
→ and the elaboration process from Λ?

→.

The elaboration algorithm is also bidirectionally-typed, and thus involves two mutually-

recursive judgments: a synthetic elaboration judgment Γ− ⊢ e− ⇒ τ+ ; d+ ⊣ ∆+, and an

analytic elaboration judgment Γ− ⊢ e− ⇐ τ− ; d+ : τ ′+ ⊣ ∆+. Notably, as a bidirectionally-

typed system, the type τ ′ assigned to holes will be the analyzed type of the expression. Holes

will only be assigned the hole type LM if the hole appears in a synthetic position. We do not

reproduce these rules here, as this work does not concern elaboration.

∆ is the hole context, used to store the typing context and actual type of each hole. Each

hole (whether in synthetic or analytic position) is recorded in the hole context, and is given

the identity mapping as its original environment3.

The elaboration judgment will output a type for the internal expression, which may be

different from the type of the external expression. In particular, elaborated holes will produce

different types depending on whether they are in synthetic or analytic position.

3This is amended in this work, in which holes will not initially be given an environment because the envi-
ronment is not substitution-based.
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3.3.4 Hazelnut Live final judgment and dynamic semantics

Hazelnut Live introduces a new d final judgment for the internal language, used to indicate

an irreducible expression in the internal language. Final values subsume values, which now

are understood to be deterministic irreducible expressions. With the cast calculus, boxed

values, i.e., values casted “into” the dynamic (hole) type but not yet casted “out,” are also

irreducible. Lastly, indeterminate values contain holes which halt evaluation. These are

summarized in Appendix B.1.1. As we introduce new internal expression forms, these rules

will be modified.

Hazelnut Live defines a small-step semantics for its internal language very similar to that

of Λ⟨τ⟩
→ . To avoid the rapid proliferation of rules due to the small-step semantics, a notational

convenience called the evaluation context E , which recursively evaluates subexpressions. The

rules are modified to accomodate indeterminate expressions.

The evaluation rules for Hazelnut Live are reproduced in big-step form in Appendix B.1.2.

3.3.5 Hole instance numbering

Hazelnut Live briefly introduces and motivates hole instances, but with no details of its

implementation. In Chapter 5, we will motivate hole instances in greater detail, describe the

current implementation, and reformulate the problem of hole instance tracking to accomodate

environments and memoization.

3.3.6 High-level overview of fill-and-resume

The fill-and-resume optimization (FAR) is motivated and described at a high level in Hazel-

nut Live. Notably, a dynamic semantics is provided for the operation using substitution,

but a full implementation is not provided. Notably, there is no description of how to detect

a valid fill operation, or how to cache multiple edit states for n-step FAR. FAR is rooted in

contextual substitution from contextual modal type theory (CMTT) [35].
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Implementing the environment model

of evaluation

4.1 Hazel-specific implementation

The implementation of evaluation in Hazel differs from a typical interpreter implementation

of evaluation with environments in three regards. First, we need to account for hole envi-

ronments. Secondly, environments are uniquely identified by an identifier for memoization

(in turn for optimization). Lastly, any closures in the evaluation result should be converted

back into λ-abstractions for viewing in the context inspector, so that the result matches the

result from evaluation with substitution.

4.1.1 Evaluation rules

The evaluation model threads a run-time environment σ1 throughout the evaluation process

for variable lookups. This replaces the variable substitution pass when evaluating with the

substitution model. An environment is conceptually a mapping σ : x 7→ d, although it will

later be augmented to be more amenable to memoization.

1The symbol σ was chosen to represent runtime environments, since it was used to represent hole environ-
ments in [2]. The relationship between these two environment types will be discussed in section 4.1.2.

26
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d val d is a value

[σ]λx : τ.d val
VFunClosure

σ ⊢ d ⇓ d′ d evaluates to d′ given environment σ

σ ⊢ (λx : τ.d) ⇓ [σ](λx : τ.d′)
ELam

σ, x← d ⊢ x ⇓ d
EVar

σ ⊢ d1 ⇓ [σ′]λx : τ.d′1 σ ⊢ d2 ⇓ d′2 σ′, x← d′2 ⊢ d′1 ⇓ d

σ ⊢ d1 d2 ⇓ d
EAp

σ ⊢ LMu· ⇓ LMuσ
EvalB-EHole

σ ⊢ d ⇓ d′

σ ⊢ LdMu· ⇓ Ld′Muσ
EvalB-NEHole

Figure 4.1: Updates to evaluation rules for the environment model of evaluation

The evaluation rules for evaluation using substitution are described in section 3.3.4 and

shown in Appendix B. We present the updates to the rules necessary for evaluation with

environments in Figure 4.1. Many of the rules are unchanged and are not repeated, especially

the evaluation of casts (EFinal, EApCast, ECastId, ECastSucceed, ECastFail, EGround,

EExpand). We also note a change to the set of value judgments: function closures [σ]λx : τ.d

are now considered values, and functions λx : τ.d are not.

As expected, a λ-abstraction binds its lexical environment, forming a function closure

(ELam). Variables are not eagerly substituted, but rather looked up in the environment

when encountered (EVar). On function application, the expression in function position is

now expected to evaluate to a function closure. The closure’s environment is extended with

the binding of the expression in argument position and the body of the function is evaluated

(EAp).

There are many additional forms added to Hazel on top of the base Hazelnut grammar,
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such as pairs, let expressions, and case expressions. The extension of the core rules should

be straightforward and these extra expression forms will not be described here. There are

two exceptions: a description of recursive λ-abstractions (the fixpoint form) is described

in section 4.1.3, and the issue of failed pattern-matching in let and case expressions is

described in section 4.2.1.

4.1.2 Evaluation of holes

In the substitution model, there is no evaluation rule for empty holes; they are final. For

non-empty holes, evaluation simply recurses into the subexpression. Notably, the hole envi-

ronment is not evaluated or updated when the hole is reached; rather, it is filled in by an

eager substitution pass when a variable binding is evaluated.

In the environment model, we do not have eager substitution passes. Thus, we update the

environment when evaluation reaches a hole by setting the hole environment to the current

evaluation (lexical) environment. To facilitate this, we originally give holes no environment

(denoted LMu· and LdMu· ), rather than the identity environment id(Γ). The latter is necessary

for substitution, but is not needed anymore.

Note that in the updated interpretation, free variables are excluded from a hole envi-

ronment. In the substitution case, free variables exist in the environment as the identity

substitution x← x.

We are currently using the subscript notation for hole environments from Hazelnut Live.

When discussing the evaluation boundary in section 4.2, we will see that it will be more

convenient separate the environment from a hole using the notation for generalized closures.

4.1.3 Evaluation of recursive functions

To handle recursion in a strongly-typed language, we require self-reference. Hazel uses

the fixpoint operator from System PCF. The static and dynamic semantics of the fixpoint

operator are described in Appendix A.2. In Hazel, the fixpoint does not exist in the external
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language, but is inserted automatically by the elaboration process when a λ-abstraction is

bound to a variable2.

We wish to introduce self-reference when evaluating with environments. Perhaps the

simplest way is to use memory references (pointers), in which environments may recursively

refer to themselves. We eschew this solution because we wish to keep the purity of the Hazel

implementation. We discuss purity of implementation in section 8.2.

We explore two pure solutions. The first is to eliminate the fixpoint by using recursive

data structures in OCaml, which simplifies evaluation but creates slight differences in the

postprocessed result. The latter is to adapt the fixpoint to the environment model of evalua-

tion. Either method is viable; however, the latter is chosen because it is closer to the original

implementation and we do not have the postprocessing issue.

The updated evaluation rules for fixpoint evaluation are shown in Figure 4.2. The eval-

uation of a fixpoint performs a side-effect on the body expression, which is expected to

evaluate to a function closure. Namely, we add a self-reference to the closure environment

(EFix). When a variable that stores a fixpoint is looked up, then the fixpoint is unwound

(EUnwind). If a variable is not a fixpoint, the regular EVar rule applies. Note that it is

possible to always evaluate the variable binding, and thus eliminate the EUnwind rule, but

this would be inefficient.

This understanding is consistent with the understanding of fixpoints when using sub-

stitution. Fixpoints are unwound when they are encountered, but when evaluating with

environments this may occur during a variable lookup.

We may avoid the fixpoint form by using mutually-recursive data structures, so that

a closure may contain an environment which contains itself as a binding. This is easy to

implement in a language with pointers or mutable references. Mutually-recursive data in

2The current implementation of Hazel only allows for recursion in a limited number of cases. The elaboration
process only inserts a fixpoint operator for a type-annotated λ-abstraction. This does not allow for mutual
recursion, which could be implemented with fixpoint operators applied to pairs of functions. This may
change in future versions of Hazel.
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σ ⊢ d ⇓ [σ′]d′

σ ⊢ fix f : τ.d ⇓ [σ, f ← fix f : τ.[σ′]d′]d′
EFix

d ̸= fix f : τ.d′

σ, x← d ⊢ x ⇓ d
EVar

σ ⊢ fix f : τ.d ⇓ d′

σ, x← fix f : τ.d ⊢ x ⇓ d′
EUnwind

Figure 4.2: Evaluation of fixpoints with the environment model

σ′ = σ, f ← d′1 d′1 = [σ′]λx.d1 σ′ ⊢ d2 ⇓ d

σ ⊢ let f = λx.d1 in d2 ⇓ d
ERecClosure

Figure 4.3: Evaluation rule for recursion using self-recursive data structures

OCaml is somewhat tricky in the general case, as it requires statically-constructive forms3.

In the more general case of mutual recursion, this would likely make implementation very

tricky, and it would be more practical to use impure refs to achieve self-reference. However,

for the simple case of a non-mutually-recursive function, we may statically construct the

mutual recursion using the rule shown in Figure 4.3.

Using the recursive environment in closures simplifies evaluation and may lead to a slight

uptick in performance, due to the elimination of unwinding steps for fixpoints. However, it

complicates the display of recursive functions in the context inspector and structural equality

checking, due to infinite recursion. The first problem is re-introducing the FixF form during

postprocessing (section 4.2) by detecting recursive environments and converting them to

FixF expressions. The second problem is solved by the fast equality checker for memoized

environments described in section 5.5, which is useful even for non-recursive environments.

We may also say that using recursive data structures without mutable refs is limited by

the language limitations, necessitating workarounds even for the simply-recursive case, and

3§10.1: Recursive definitions of values of the OCaml reference describes this in greater detail. Simply put, this
prevents recursive variables from being defined as arguments to functions, instead only allowing recursive
forms to be arguments to data constructors.

https://ocaml.org/manual/letrecvalues.html
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let f = λ x . { LM1 } in

f f

Listing 1: Illustrating the problem with postprocessing with recursive closures

potentially much more complicated workarounds for the mutual recursion case.

There is a nuance that may cause the postprocessed4 result to slightly differ from that

using the fixpoint form. To illustrate this, consider the simple program in Listing 1. The

result will be a closure of hole 1 with the identifiers x and f in scope. When evaluating

using the fixpoint expression, the binding for f will be the expression (fix f.[∅]λx.LM1), and

the binding for x is ([f ← fix f.[∅]λx.LM1]λx.LM1). f is bound to the closure in the EFix rule,

and x is bound during EAp to the evaluated value of f.

However, when evaluating with a recursive data structure, both x and f refer to the same

value d = ([f ← d]λx.LM1). It is impossible to discern the two and decide where to begin

the “start of the recursion,” i.e., to determine that f should be a fixpoint expression and

x should be a λ-abstraction, at least without significant additional extra effort. Thus to

remove the recursion, we may arbitrarily decide that the outermost recursive form should be

a λ-abstraction and set the recursive binding in its environment to be a fixpoint expression,

which will successfully remove the recursion but mistakenly change some expressions that

would be fixpoint forms to λ-expressions. This distinction may not be critical, but it will

at least confuse the user. This justifies our use of the fixpoint form for evaluating recursive

functions.

4.1.4 Type safety

Type safety of a dynamic semantics ensures that it coheres with the static semantics. In other

words, it is a useful check for the correctness of a dynamic semantics. Following the style

in ??, we establish type safety via two safety properties: (type) preservation and progress.

4Postprocessing will be discussed in section 4.3.
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Proofs are provided for Hazelnut Live using the substitution model. Here we loosely motivate

that the switch to using environments for binders maintains these properties.

(Type) preservation (Metatheorem 4.1.1) states that the type of an expression is preserved

by evaluation. The proof of this should not differ much. Closures exist now as a wrapper

but do not change the type of the underlying expression. Variables are looked up in an

environment rather than substituted during binding time, but that does not change the type

of the expression. Thus we expect the type of the evaluated result to be the same.

Progress (Metatheorem 4.1.2) states that each expression evaluates to a final expression,

i.e. that no expression forms remain unevaluated. This uses the final judgment described

in Appendix B.1.1, as well as our modifications described in Figure 4.8. The main changes

lie in the evaluation of closures, including function and hole closures. We will discuss the

evaluation boundary and how any expression that is unevaluated will be contained inside a

closure (Metatheorem 4.2.1).

Metatheorem 4.1.1 (Preservation). If ∆;∅ ⊢ d : τ and d ⇓ d′, then ∆;∅ ⊢ d′ : τ .

Metatheorem 4.1.2 (Progress). If ∆;∅ ⊢ d : τ then ∃d′ such that d ⇓ d′ and d final.

4.2 The evaluation boundary and general closures

Evaluation with the environment model lazily substitutes variables. Evaluation steps that

require the environment (e.g., evaluation of holes and variables) are only performed when

evaluation reaches the expression of interest. Evaluation with the substitution model eagerly

substitutes using a separate substitution pass. In the evaluation result or in the Hazel context

inspector, the user may examine expressions in the internal language. The user expects to

see fully substituted values, and closures should not appear directly to the user. For example,

free variables in a function body should show the captured expression.

In other words, any unevaluated expression must be “caught up” to the substituted equiv-

alent after evaluation. This requires that the environment be stored alongside the unevalu-
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ated expression, and that a postprocessing step should be taken to perform the substitution

and discard the stored environment. Note that this is essentially performing a substitu-

tion pass after evaluation, but is preferred over substitution during evaluation because it is

only performed on the evaluation result (rather than all the intermediate expressions during

evaluation). We call this substitution postprocessing, and will be discussed in section 4.3.

We first define the evaluation boundary to be the conceptual distinction between expres-

sions for which evaluation has reached (“inside” the boundary), and for those that remain

unevaluated (“outside” the boundary). This definition will be useful for describing the post-

processing algorithm, closures, and fill-and-resume.

4.2.1 Evaluation of failed pattern matching using generalized clo-

sures

There are two cases where an expression in the evaluation result may lie outside the evalu-

ation boundary5. The first is in the body of a λ-abstraction. A λ-abstraction evaluates to a

closure, and thus captures with it the lexical environment in which the function was defined.

The second case is that of an unmatched let or case expression (in which the scrutinee

matches none of the rules), for which the body expression(s) will remain unevaluated in the

result without an associated environment6. Pattern-matching is not part of Hazelnut Live

or in this paper because pattern-matching is not a primary concern of either of these works.

However, it is a practical concern with Hazel that arises from the introduction of evaluation

with environments.

We solve this by introducing (lexical) generalized closures, the product of an arbitrary

expression and its lexical environment. Traditionally, the term “closure” refers to function

closures, which are the product of a λ-abstraction with its lexical environment. Hazelnut

Live introduces hole closures, which are the product of hole environments with their lexical

5A third case will appear in Chapter 6 when we discuss the fill-and-resume optimization.
6There is a third place where pattern-matching may fail: the pattern of an applied λ-abstraction may not
match its argument. However, this is not an issue since functions are already captured in a closure.
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environments, and are fundamental to the Hazel live environment. Hole environments allow

a user to inspect a hole’s environment in the context inspector, and enable the fill-and-resume

optimization described in Chapter 6. We propose generalizing the term “closures” to the

definition stated above. Conceptually, all generalized closures represent a “stopped and/or

resumable” evaluation using the environment model, as well as the state (the environment)

that may be used to resume the evaluation. Similar to the evaluation of function closures,

closures are final (boxed) values and evaluate to themselves.

The application of generalized closures to the problem of unevaluated let or case bod-

ies is straightforward: if there is a failed pattern match, wrap the entire expression in a

(generalized) closure with the current lexical environment. Then, the postprocessing can

successfully perform the substitution.

4.2.2 Generalization of existing hole types

Consider the abbreviated definition of the internal expression variant type in Figure 4.4. In

Figure 4.4a the previous implementation is shown (when evaluating using the substitution

model), augmented with a type for function closures. In this version, each expression variant

that requires an environment has the environment hardcoded into the variant. In Figure 4.4b

the proposed version with generalized closures is shown. The Lam, Let, and Case variants

are unchanged. Importantly, the environments are removed from the hole types and a new

generalized Closure variant is introduced. In this model, a hole, λ-abstraction, unmatched

let, or unmatched case expression is wrapped in the Closure variant when evaluated.

The notation used to express a function closure may be extended to all generalized closure

types. In particular, the environment for a hole changes from the initial notation used in

Hazelnut Live to a notation similar to function closures, shown in Figure 4.5.

This implementation of closures is an improvement in three ways. Firstly, it simplifies

the variant types by factoring out the environment, separating the “core” expression from

the environment coupled with it. Secondly, it allows for a more intuitive understanding of
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type t =

(* Hole types *)

| EmptyHole(u, i, σ)
| NonEmptyHole(u, i, σ, d)
| Keyword(u, i, σ, ...)

| InvalidText(u, i, σ, ...)

| FreeVar(u, i, σ, ...)

| InconsistentBranches(u, i, σ, ...)

(* λ expressions and closures *)

| Lam(x, τ, d)
| FnClosure(σ, x, τ, d)
(* ... *) ;

(a) Non-generalized closures

type t =

(* Hole types *)

| EmptyHole(u, i)
| NonEmptyHole(u, i, d)
| Keyword(u, i, ...)

| InvalidText(u, i, ...)

| FreeVar(u, i, ...)

| InconsistentBranches(u, i, ...)

(* λ expressions and closures *)

| Lam(x, τ, d)
(* Generalized closure *)

| Closure(σ, d)
(* ... *) ;

(b) Generalized closures

Figure 4.4: Comparison of internal expression datatype definitions (in module DHExp) for
non-generalized and generalized closures.

[σ]λx.d (function closure)

[σ]LdMu (hole closure)

[σ](let x = d1 in d2) (closure around let)

[σ](case x of rules) (closure around case)

Figure 4.5: Revised notation for generalized closure
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holes in the environment model of evaluation. This solves the question of what environment

to initialize a hole with when it is created during the elaboration phase: a hole is simply

initialized without a hole environment, much as a function closure is initially without an

environment (a plain syntactical λ abstraction). This removes the need for the awkward

notation LdMu· introduced earlier to indicate a hole that has not yet been assigned an environ-

ment. Lastly, generalized closures play an important role in the fill-and-resume operation,

in which (unevaluated) closures can contain arbitrary subexpressions and allow “resuming”

evaluation in the stored environment.

Note that while the generalized closures for the body expressions of λ abstractions, un-

matched let expressions, and unmatched case expressions represent expressions outside of

the evaluation boundary, the expressions within non-empty holes (which also are bound to a

hole closure) lie within the evaluation boundary. This shows the two goals that generalized

closures achieve; to encapsulate a stopped expression (which is used during postprocessing

to perform substitution), and to encapsulate an expression to be filled for the fill-and-resume

operation.

4.2.3 Formalizing the evaluation boundary

We may characterize the evaluation boundary with two theorems on the evaluated result.

First, we need to define three auxiliary judgments.

The d− uneval unevaluated judgment shown in Figure 4.6 indicates that an expression

form directly contains an unevaluated expression, or may contain an unevaluated expression

at some point in the future. In Hazelnut Live, function bodies are the only unevaluated

expressions. We note also that hole expressions are also considered uneval; this is because if

they are filled in fill-and-resume, they will contain an unevaluated expression. If we consider

Hazel’s more complete syntax, then additional axioms should be added for unmatched let

and case statements. UENotFinal provides an intuitive characteristic of the uneval judg-

ment: unevaluated expressions are not final (evaluated). It is trivial to prove UENotFinal
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d uneval d contains an unevaluated subexpression not in a closure

λx : τ.d uneval
UELam

LMu uneval
UEEHole

LdMu uneval
UENEHole

d uneval

d not final
UENotFinal

Figure 4.6: Unevaluated judgment

from the three axioms and from the final judgment.

Two subexpression judgments are shown in Figure 4.7. d− ⊆ d′− indicates that a d

is a subexpression of d′, not recursing into hole environments. d ∈ d′ also indicates a

subexpression, but allows recursing into closure environments. This distinction is important

because all environments lie inside the evaluation boundary.

Metatheorem 4.2.1 (Evaluation boundary). If ∅ ⊢ d ⇓ d1 and d2 ∈ d1 and d2 uneval, then

d2 ⊆ [σ]d3 ∈ d1.

Metatheorem 4.2.1 states that all unevaluated subexpressions lie within a closure in the

evaluated result. This theorem ensures that the postprocessing substitution and fill-and-

resume will have the necessary information to succeed. The justification is straightforward

by switching on the evaluation rules. The evaluation rules for λ-abstractions and hole ex-

pressions wrap the expression in a closure.

Metatheorem 4.2.2 (Singular evaluation boundary). If ∅ ⊢ d ⇓ d1 and d2 ∈ d1 and

[σ]d2 ∈ d1 and [σ]d2 ⊂ [σ′]d3, then d3 = Ld4Mu.

Metatheorem 4.2.2 states that there are no nested closures in an expression (not recursing

into closure environments). This means that unevaluated expression are always separated

from evaluated expressions by a single closure, justifying the term “evaluation boundary”

rather than “evaluation boundaries.” The only case when closures may be nested are in

the case of non-empty holes, in which the hole expression actually lies within the evaluation
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d ⊆ d′ d is a subexpression of d′

d ⊆ d
SEId

d ⊆ d′

d ⊆ λx : τ.d′
SELam

d ⊆ d1

d ⊆ d1 d2
SEAp1

d ⊆ d2

d ⊆ d1 d2
SEAp2

d ⊆ d′

d ⊆ Ld′Mu
SENEHole

d ⊆ d′

d ⊆ [σ]d′
SEClosure

d ∈ d′ d exists in d′

d ⊆ d′

d ∈ d′
SEDirect

d ∈ σ

d ∈ [σ]d′
SEEnv

d ∈ σ d exists in σ

d ∈ σ

d ∈ σ, x← d′
SEEnv1

d ∈ d′

d ∈ σ, x← d′
SEEnv2

Figure 4.7: Subexpression judgment

boundary7. We justify this theorem in the same manner by using induction on the evaluation

rules, keeping track of nested closures and recognizing that the outer closure(s) must be

around non-empty holes.

4.2.4 Alternative strategies for evaluation past the

evaluation boundary

Without generalized closures, unevaluated expressions (body expressions of λ-abstractions,

unmatched let expressions, and unmatched case expressions) may be reached by ordinary

evaluation which is slightly in that a failed lookup (due to in-scope but yet-unbound vari-

ables) will leave the variable unchanged8. However, this eager evaluation is essentially the

same as substitution, and is expensive to do during evaluation. Also, while this specula-

7We similarly need to consider the scrutinee of unmatched let and case statements, which lies within the
evaluation boundary.

8Ordinarily, a lookup on a BoundVar (a variable which is in scope) should never fail during evaluation, and
thus throws an exception during evaluation.
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tive execution would be reasonable for let expressions, it would be highly undesirable for

case expression, where it is easy to imagine an example where speculative execution of all

branches leads to infinite recursion.

Another way to eliminate the case of unmatched expressions is to introduce an exhaus-

tiveness checker to Hazel; then, we can guarantee (at run-time) that a pattern will never fail

to match. This would also require changing the semantics of pattern holes, which always

fail to match; the behavior may be changed so that pattern holes always match, but do not

introduce new bindings. Since the focus of this work is not on patterns, these ideas were not

explored and are left for future work in the Hazel project.

4.2.5 Pattern matching for closures

Pattern matching is not the primary focus of this work, but it warrants a brief discussion

here. Since we introduce a new DHExp.t variant, we also need to implement all the methods

that switch on a DHExp.t, such as pattern matching.

Pattern matching is implemented in the function Evaluator.matches, which has type

(DHPat.t, DHExp.t) => Evaluator.match_result. If pattern matching succeeds, then

an environment containing the matched binding(s) will be returned. Otherwise, pattern

matching may be indeterminate (if either the pattern or bound expression is indeterminate),

or it may fail. Note that the expression passed to Evaluator.matches is already evaluated.

Closures are a unique variant of DHExp.t in that they are a container type, whose con-

tained expression determines its behavior during pattern matching. An evaluated closure9

may only contain one of four types of expressions: λ-abstractions, holes, unmatched let

expressions, or unmatched case expressions. The former is a boxed value and should match

against variables only, and otherwise fail. The latter three are indeterminate and should

match against variables and return an indeterminate match otherwise.

Another way to understand this behavior is to consider the updated final judgment once

9An evaluated closure is one for which the re_eval flag introduced in section 6.2.2 is false. Thus far, all
closures we have encountered are evaluated.
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[σ]λx : τ.d val
VFunClosure

d ̸= λx : τ.d

[σ]d indet
IClosure

[σ]d final
FClosure

Figure 4.8: Updates to final judgments with generalized closures

closures have been taken into account. These updated final judgments are shown in Fig-

ure 4.8. Function closures are values (VFunClosure). Other general closures are indeter-

minate (IClosure). The IClosure rule subsumes the old IEHole and INEHole rules in Ap-

pendix B.1.1. FClosure states that all closures are final expressions10. The derivation of

FClosure from VFunClosure and IClosure is trivial.

4.3 The postprocessing substitution algorithm (⇑[])

The substitution postprocessing process aims to perform substitution on expressions that

lie outside the evaluation boundary in the evaluation result (an internal expression). The

algorithm works in two stages: first inside the evaluation boundary, and then proceeding

outside the boundary when a closure is encountered.

The symbol chosen to denote postprocessing is ⇑[]11. The two stages of this algorithm

will be denoted ⇑[],1 and ⇑[],2, respectively.

4.3.1 Substitution within the evaluation boundary (⇑[],1)

When inside the evaluation boundary, all (bound) variables have been looked up and all hole

environments assigned, so we do not need to perform any substitution. The main point of

this step is to recurse through the expression until a closure is found, at which point we enter

the second stage and perform substitution.

10See the previous comment. Re-evaluatable closures will no longer be final.
11The choice of symbol is somewhat arbitrary, but we may read it as “reverting” some expressions generated
by and useful for evaluation (i.e., closures) to a more context-inspector-friendly form, which is in some
sense the opposite of evaluation (⇓). The bracket subscript indicates that this post-processing step is
intended to remove closure expressions.
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For expressions without subexpressions, the expression is returned unchanged; there is

nothing to do. For other non-closure expression types, ⇑[],1 recurses through any subexpres-

sions.

For closure types, we first need to recusively apply ⇑[],1 to all bindings in the closure

environment. For non-empty holes, the body is inside the evaluation boundary and thus

⇑[],1 is applied. For other expressions inside a closure, the body expression is outside the

evaluation boundary, and thus ⇑[],2 is applied to the body expression, using the closure

environment. The closure is then removed.

A λ-abstraction, let expression, case expression, hole outside of a closure, or a bound

variable that has not been looked up, will never exist outside of a closure within the evaluation

boundary, so these cases need not be handled.

Note that in the implementation with recursive data structures used to represent envi-

ronments as described in section 4.1.3, an additional step must be taken before recursing

into function closures. Recursive function bindings must be detected and converted to FixF

expressions to prevent infinite recursion.

4.3.2 Substitution outside the evaluation boundary (⇑[],2)

When outside the evaluation boundary (and inside a closure), we need to substitute bound

variables12 and assign an environment to holes.

Bound variables are looked up in the environment; this lookup may fail if the variable does

not exist in the environment, in which case the variable is left unchanged. For other primary

expressions, the expression is left unchanged. When a hole is encountered, it is assigned the

closure environment13. A closure will never exist outside the evaluation boundary in the

evaluation result (by Metatheorem 4.2.2).

12The wording is a little tricky here, since there are the BoundVar and FreeVar internal expression variants,
which refer to variables which are in scope or not in scope. However, we may only substitute variables
which are in-scope (BoundVar) and bound; some instances may not yet be bound.

13There is nothing to do at this point for hole closures. The hole closure numbering step will assign a closure
identifier to the hole as described in the second postprocessing algorithm in section 5.4.
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d ⇑[] d
′ d is substitutes to d′ inside the evaluation boundary

c ⇑[] c
PPI[]Const

d1 ⇑[] d′1 d2 ⇑[] d′2
d1 d2 ⇑[] d′1 d′2

PPI[]Ap

σ ⇑[] σ′ σ′ ⊢ d ⇑[] d′
[σ]d ⇑[] d′

PPI[]Closure

σ ⇑[] σ
′ σ substitutes to σ′ (outside the evaluation boundary)

∅ ⇑[] ∅
PPI[]EnvNull

σ ⇑[] σ′ d ⇑[] d′
σ, x← d ⇑[] σ′, x← d′

PPI[]Env

σ ⊢ d ⇑[] d
′ d substitutes to d′ outside the evaluation boundary

c ⇑[] c
PPO[]Const

σ, x← d ⊢ x ⇑[] d
PPO[]BoundVar

x ̸∈ σ

σ,⊢ x ⇑[] x
PPO[]UnboundVar

σ ⊢ d ⇑[] d′
σ ⊢ λx.d ⇑[] λx.d′

PPO[]Lam

σ ⊢ d1 ⇑[] d′1 σ ⊢ d2 ⇑[] d′2
σ ⊢ d1(d2) ⇑[] d′1(d′2)

PPO[]Ap
σ ⊢ LMu ⇑[] [σ]LMu

PPO[]EHole

σ ⊢ d ⇑[] d′
σ ⊢ LdMu ⇑[] [σ]Ld′Mu

PPO[]NEHole

Figure 4.9: Substitution postprocessing

Note that the ⇑[],1 algorithm only takes an internal expression d as its input, whereas the

⇑[],2 algorithm takes an internal expression d and a (closure) environment σ as inputs.

We may try to characterize the result of the substitution process slightly more formally.

Metatheorem 4.3.1 describes how the substitution postprocessing algorithm removes closures

in the result. Notably, this states that a closure exists in the postprocessed result if and only

if the closure’s expression is a hole. This is consistent with what we expect in Hazelnut

Live, where closures did not exist outside of hole closures. We can justify this by performing

induction on the postprocessing rules; it is clear that all closures are eliminated using the
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PPI[]Closure rule, and closures are only introduced using the PPO[]EHole and PPO[]NEHole

rules.

Metatheorem 4.3.2 states that the postprocessed result of evaluation with environments

is the same as the result of evaluation with substitution, as presented in Hazelnut Live. We

provide an intuitive justification for this. First, we check that the evaluation rules for the

environment model are correct, and this is easy due the similarity to the evaluation rules for

evaluation with substitution and evaluation with environments. The difference in the result

lies only outside the evaluation boundary: holes and variables may not be correctly bound

outside the environment boundary. We then perform induction using the postprocessing

rules to ensure that variables and hole environments are properly looked up outside the

evaluation boundary. Metatheorem 4.2.1 states that the postprocessing algorithm will have

the necessary environments to perform the substitution pass. Metatheorem 4.3.1 affirms

that there will be no stray closures remaining in the result except hole closures, as non-hole

closures did not exist in evaluation with substitution.

Metatheorem 4.3.1 (Substitution postprocessing closures). If σ ⊢ d ⇓ d1 and d1 ⇑[] d2,

then:

1. If [σ]d3 ∈ d2, then d3 = LMu or d3 = LdMu.

2. If d3 = LMu or d3 = LdMu, then d3 ⊂ [σ]d3.

Metatheorem 4.3.2 (Evaluation with environments correctness). Let ⇓s be the evaluation

semantics described by Hazelnut Live [2]. Then if σ ⊢ d ⇓ d1 and d1 ⇑[] d2, and if d ⇓s d3,

then d2 = d3.

4.3.3 Post-processing memoization

There is repeated postprocessing if the same closure environment is encountered multiple

times in the evaluation result. If we can identify and look up environments, then we can

memoize their postprocessing.
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Modifications to the environment datatype

Memoization of environments requires a unique key for each environment. The existing

environment type Environment.t is a map σ : x 7→ d. We introduce a new environment

type EvalEnv.t14 that is the product of an identifier and the variable map σ : (idσ, x 7→ d),

in which idσ indicates a unique environment identifier.

To ensure that there is a bijection between environment identifiers and environments,

a new unique identifier must be generated each time an environment is extended. An in-

stance of EvalEnvIdGen.t is used to generate a new unique identifier, and is required as an

additional argument to functions in the EvalEnv module that modify the environment15.

Note that while physical identity may be used to distinguish between different environ-

ments, it is difficult to use for efficient lookups due to the abstraction of pointers in a high-

level language like OCaml or Javascript. We may think of numeric identifiers (in general)

as high-level pointers. We may state this property of environment identifiers as Metatheo-

rem 4.3.3, which allows us to use environment identifiers as a key for environments.

Metatheorem 4.3.3 (Use of idσ as an identifier). The mapping iσ : σ 7→ idσ that maps

an environment (identified up to physical equality) to its assigned environment identifier is

a bijection.

We justify this by the construction of environment identifiers. σi ̸= σj implies that

there is a series of modified environments {σi, σi+1, . . . , σj−1, σj} (without loss of generality,

assume σi is an earlier environment than σj). By construction, each element of the set

{iσ(σi), iσ(σi+1), . . . , iσ(σj)} is unique. Thus iσ(σ1) ̸= iσ(σ2).

14This is the name in the current implementation (due to this environment type being specialized for evalu-
ation), but perhaps a better name is MemoEnv.t.

15In the same manner as MetaVarGen.t, EvalEnvId.t is implemented as type int and EvalEnvIdGen.t

is implemented as a simple counter. To keep the implementation pure, the instance of EvalEnvIdGen.t
needs to be threaded through all calls of Evaluator.evaluate to avoid a global mutable state, and is
discussed in section 8.2.
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Modifications to the post-processing rules

During substitution postprocessing (⇑[]), a mapping idσ 7→ σ stores the set of substituted

(postprocessed) environments. Upon encountering a closure in the evaluation result, it is

looked up in this map. If it is found, the stored result is used. If it is not found, the

environment is recursively substituted by applying ⇑[],1 to each binding.

4.4 Implementation considerations

This section details various design decisions and tradeoffs of the current implementation;

some parts of this may require an understanding of the hole closure numbering postprocessing

step described in Chapter 5.

4.4.1 Data structures

As is common in functional programming, the most common data structures used are (linked)

lists and maps (binary search trees). The standard library modules List and Map are used

for these. In particular, the original implementation uses linked-lists for the implementation

of environments, and we have not modified this decision. In Hazel, the hole closure storage

data structures HoleClosureInfo_.t and HoleClosureInfo.t use a combination of maps

and lists.

The only major change to the data structures is the switch from using linked lists

(VarMap.t) as the backing store for environments to using a binary search tree represen-

tation (VarBstMap.t). This improves performance of operations on large environments.

Hashtables were not used at all in the implementation; their effect on performance is

unknown and is reserved for future work. While they allow for amortized O(1) operations,

they are stateful and thus difficult to copy, and do not allow for the structural sharing

memory optimization. Since immutable data structures are efficiently copied each time they

are modified, the costs of introducing hashtables will likely outweigh the costs.
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4.4.2 Additional constraints due to hole closure numbering

Section 5.4.1 introduces another postprocessing algorithm, which may be combnied with

substitution postprocessing. The introduction of hole closure parents in section 5.3.1 makes

closure memoization more difficult for environments in non-hole closures. In particular,

adding a new parent to a hole requires that the hole postprocessing (the hole closure num-

bering operation) be re-run on a hole. Memoizing the hole prevents a hole closure in an

environment from being assigned multiple closure parents. To get around this, we propose

a modified memoization routine in section 5.4.3 that only postprocesses environments when

a hole or variable is reached, rather than when a closure is reached in postprocessing.

4.4.3 Storing evaluation results versus internal expressions

The evaluation takes as input an internal expression and returns the evaluated internal

expression along with a final judgment (either BoxedValue or Indet).

The decision should be made whether to store this final judgment in the environment16.

Storing the judgment allows us to simply use the stored value directly during evaluation,

but requires much boxing and unboxing in other cases (e.g., during postprocessing). On

the other hand, not storing the judgment is cleaner when used outside of evaluation, but

requires recalculation of the final judgment during evaluation upon lookup17. The decision is

somewhat arbitrary but may have small effects on the evaluation performance and elegance

of implementation.

16In other words, we need to decide whether EvalEnv.t should be a mapping from variables to
EvalEnv.result (including final judgment) or from variables to DHExp.t.

17Recalculating the final judgment means re-evaluating the expression upon variable lookup, since the
Evaluator.evaluate function currently performs the evaluation and final judgments. This should not
be an expensive operation since the value should already be final and cannot make any evaluation steps,
but still may require several calls to evaluate.



Chapter 5

Identifying hole closures by physical

environment

5.1 Rationale behind hole instances and unique hole

closures

Consider the program displayed in Listing 2. The evaluation result of the program is

[a← [∅]LM1, x← 3]LM2 + [a← [∅]LM1, x← 4]LM2

Note that the two instances of LM2 have different environments, and we thus distinguish

between the two occurrences of LM2 as separate instances of a hole. However, note that while

there are also two instances of the hole LM1 in the result, these share the same (physically

equal) environment. No matter what expression we fill hole LM1 with (for example, using the

fill-and-resume operation) the hole will evaluate to the same value. This differs from the

hole LM2, whose filling may cause different instances to evaluate to different values due to

non-capture-avoiding substitution. For example, filling hole LM2 with the expression x + 2

will cause the instances to resolve to 5 and 6, respectively.

47
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let a = LM1 in

let f = λ x . { LM2 } in

f 3 + f 4

Listing 2: Illustration of hole instances

The current implementation assigns an identifier i to each instance of a hole, and the

instance number is unique between all instances of a hole. While this makes perfect sense

for LM2, the assignment of two separate holes to LM1 may confuse Hazel users, since these

hole instances are identical and filling them with any value will result in the same value.

The solution is to unify all instances of a hole which share the same (physically equal)

environment, and thus identify hole instances by hole number and environment. A set of

hole instances that share the same environment will be called a unique hole closure, simply

hole closure1, or hole instantiation.

To illustrate why physical equality is used to identify environments, consider the case

shown in Listing 3. This simpler program evaluates to

[x← 2]LM1 + [x← 2]LM1

In this case, hole 1 has two instances with two environments with structurally equal bindings.

If the argument to the second invocation of f is changed to 3, then the holes will have

different environments and may thus fill to different values. This may be confusing to the

Hazel user; what appears to be a single hole closure is actually two different hole closures

which incidentally have the same values bound to its variables.

An intuitive way of understanding the use of physical equality is that separate instantia-

tions of the same hole should be distinguished. This is highly related to function applications.

A hole may only appear multiple times in the result in two different ways: it may exist in

1“Hole closure” also is used to describe the generalized closure around hole expressions as described in
Chapter 4. Here we are referring to the set of instances of the same hole that share the same physical
environment. Hence we call this interpretation “unique hole closure” to distinguish it from the former
interpretation, but the interpretation should be clear from context.
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let f = λ x . { LM1 } in

f 2 + f 2

Listing 3: Illustration of physical equality for environment memoization

the body of a function that is invoked multiple times (multiple hole instantiations), or it

may appear in a hole that is referenced from other holes (shared hole instantiation). The

former leads to multiple hole closures, while the latter leads to a single hole closure.

5.2 The existing hole instance numbering algorithm

Hole numbering is a process that follows evaluation and operates on the evaluation result2.

It assigns a hole instance number to each hole. Hole instances are briefly motivated in

Hazelnut Live, but the algorithm for hole numbering algorithm was not. We will provide

a brief high-level description of it here, and then provide the inference rules for our own

implementation. It is a breadth-first search of the result, recursing through holes. When

a hole is encountered, it is assigned a unique hole instance number3 and added to a data

structure HoleInstanceInfo.t that keeps track of all hole instances. Each hole instance’s

hole number, hole instance number, hole closure environment, and path4 is stored in this

data structure. The HoleInstanceInfo.t is in turn stored in the Result.t that stores all

of the information about an evaluated program. The primary use of HoleInstanceInfo.t

is for the context inspector. With this data structure, users may easily iterate all instances

of a selected hole, examine the hole path of a selected hole, examine the environment of a

selected hole, or navigate to another hole instance.

2The function in the existing codebase that performs hole renumbering is Program.renumber. We may refer
to it throughout this text as “hole numbering,” “hole renumbering,” or “hole tracking.”

3I.e., each hole instance is uniquely identified by the pair of identifiers (u, i). The hole instance number only
has to be unique out of the hole instances for a particular hole u.

4The path of a hole is the recursive list of hole parents that must be traversed in order to reach a hole. In
other words, this is the path to a hole if we envision the result expression as a tree, in which each hole is a
node that fathers all of its variable binding expressions.
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5.3 Issues with the current implementation

Consider the program shown in Listing 4. A performance issue appears with the existing

evaluator with this program5. As we increase the number of consecutive let expressions,

we get an exponential slowdown that makes evaluation impractical for n > 10. The results

of running this program for several values of n is shown in tabular form in Table 7.2 and

graphically at Figure 7.4a.

For now, let us consider the case when n = 3. When evaluating with environments6, the

result is shown in Figure 5.1.

The program slowdown happens in the hole numbering process. Recall from section 5.2

that the hole numbering process is a simple tree traversal algorithm. Thus, each time a hole

(with the same environment) is encountered, it and all of its descendant holes will be given

more hole instance numbers. This leads to the hole numbering shown in Figure 5.2. We see

that there are four instances of hole 1, two instances of hole 2, and one instance of hole 3.

In sum, we see that there are eight total hole instances. The number of holes increases by

powers of two. As n increases, the total number of holes (including the instance of last hole)

will be exactly 2n.

Clearly this is undesirable from an efficiency perspective. It is also undesirable from the

perspective that there is only one instantiation of each of the holes. While there are multiple

paths to each node, we would like to change the representation to match that of the unique

hole closures or hole instantiations as described in section 5.1.

5.3.1 Hole instance path versus hole closure parents

Visually, we would like to change the hole tracking to use a representation more similar to

Figure 5.1 rather than that of Figure 5.2. In the old representation, each hole instance is

5This was first brought to attention by a GitHub issue at https://github.com/hazelgrove/hazel/issues/
536.

6When evaluating using the substitution model, evaluation also slows down exponentially, because the vari-
ables are eagerly substituted into the hole environments. We do not have a performance issue with evaluation
with environments because of lazy variable lookups.

https://github.com/hazelgrove/hazel/issues/536
https://github.com/hazelgrove/hazel/issues/536
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let a = LM1 in

let b = LM2 in

let c = LM3 in

let d = LM4 in

let e = LM5 in

let f = LM6 in

let g = LM7 in

...

let x = LMn in

LMn+1

Listing 4: A Hazel program that generates an exponential (2N) number of total hole instances

[σ4]LM4

[σ3]LM3

[σ2]LM2

[∅]LM1

c

b

ab

a

a

Figure 5.1: Structure of the result of the program in Listing 4

[σ4]LM4:1

[σ3]LM3:1

[σ2]LM2:2

[∅]LM1:4

[∅]LM1:3[∅]LM1:2

[σ2]LM2:1[∅]LM1:1

c
b

a

b
aa

a

Figure 5.2: Numbered hole instances in the result of Listing 4
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uniquely identified by a hole number and hole path.

In the new representation, hole instantiations are uniquely identified by hole number and

environment, and are not uniquely identified by a path anymore. Thus, for each hole closure

we instead keep track of a list of its parent holes.

We note that these two representations of a graph are equivalent7, assuming that nodes

sharing an environment are considered to be physically equal. The first describes the path

to each node, while the latter is an adjacency list representation. Either representation of a

graph can be used to construct the other, but the latter is much more efficient in the case

of a dense graph.

Changing the structure from using hole paths to hole parents forces a minor change to

the Hazel UI. When a user selects a hole, rather than showing the path to the hole, the list

of parents to the hole are shown instead.

5.4 Algorithmic concerns and a two-stage approach

To efficiently build the new hole-tracking data structure, we expect to have a fast lookup

of hole numbers and environment identifiers. On the other hand, we want the interface of

this data structure to be similar to the interface of HoleInstanceInfo.t: the user should

be able to efficiently look up environments by hole number and hole closure number.

To efficiently handle both of these desired properties, we require two different data

structures. The first is an auxiliary data structure HoleClosureInfo_.t that is a map

H : (u, σ) 7→ (i, p) where p denotes the the parents of a hole closure. The second is

the data structure that will be used for the context inspector and hole closure lookups,

HoleClosureInfo.t, that is a map H : (u, i) 7→ (σ, p). The maps are implemented as binary

search trees for efficient lookups and updates8. The first stage of this algorithm is to build

7This structure is more specifically a join-semilattice.
8Note that this is one of the few places where a hashtable implementation is appropriate in the context of this
project, since we do not copy these data structures. However, there will likely not be a major performance
benefit; the main benefit lies in memoizing environments.
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the HoleClosureInfo_.t; the second stage is to convert it to a HoleClosureInfo.t.

For convenience, we do not use two different symbols for these two data structures;

the difference is purely an implementation detail regarding the construction of the data

structure. The conversion from HoleClosureInfo_.t to HoleClosureInfo.t is trivial and

will not be described here in detail. It simply involves iterating over the unique hole closures

and changing the mapping to be indexed by hole number and hole closure number.

5.4.1 The hole numbering algorithm

The hole numbering algorithm is shown in Figure 5.3. Constants and variables are left

unchanged by the hole numbering algorithm. For ordinary expressions with subexpressions,

the algorithm recurses through subexpressions.

For hole expressions that have not been encountered before, the hole number and envi-

ronment do not exist in H. A hole closure number i = hid(H, u) is generated to be unique

out of hole closures for the hole u. We recursively postprocess the environment. Then the

hole closure is inserted into H, along with the postprocessed environment.

For hole expressions that have been encountered before, the hole number and environ-

ment do exist in H. We can use this to look up the hole closure number i, postprocessed

environment σ′, and list of parents {pi} for this hole closure. We update the list of parents

to include the current parent p, and return the hole numbered with i.

This algorithm memoizes environments by storing them in H. Thus when a encountered

that has already been postprocessed is encountered, it uses the looked-up environment rather

than re-postprocessing the environment. This memoization is not necessary to the algorithm.

5.4.2 Hole closure numbering order

The order of the numbers assigned to hole closures is not specified in the algorithm shown in

Figure 5.3, but it is a consideration in the implementation. In the existing implementation,

the evaluation result is traversed in a breadth-first search (BFS) order. On the other hand,
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H, p ⊢ d ⇑i d
′ ⊣ H ′ d gets renumbered to d′

H, p ⊢ c ⇑i c ⊣ H
PPiConst

H, p ⊢ x ⇑i x ⊣ H
PPiVar

H, p ⊢ d ⇑i d′ ⊣ H ′

H, p ⊢ λx : τ.d ⇑i λx : τ.d′ ⊣ H ′ PPiLam

H, p ⊢ d1 ⇑i d′1 ⊣ H ′ H ′, p ⊢ d2 ⇑i d′2 ⊣ H ′′

H, p ⊢ d1 d2 ⇑i d′1 d′2 ⊣ H ′ PPiAp

H, p ⊢ d ⇑i d′ ⊣ H ′

H, p ⊢ d : τ ⇑i d′ : τ ⊣ H ′ PPiAsc

(u, e) ̸∈ H i = hid(H, u)
H, (u, i) ⊢ σ ⇑i σ′ ⊣ H ′ H ′′ = H, (u, e)← (i, {p}, σ′)

H, p ⊢ [σe]LMu ⇑i [σ′e]LMu:i ⊣ H ′′ PPiEHoleNew

H = H ′, (u, e)← (i, {pi}, σ′e) H ′′ = H, (u, e)← (i, {pi} ∪ {p}, σ′e)

H, p ⊢ [σe]LMu ⇑i [σ′e]LMu:i ⊣ H ′′ PPiEHoleFound

(u, e) ̸∈ H i = hid(H, u) H, (u, e),⊢ σ ⇑i σ′ ⊣ H ′

H ′′ = H, (u, e)← (i, {p}, σ′) H ′′, p ⊢ d ⇑i d′ ⊣ H ′′′

H, p ⊢ [σe]LdMu ⇑i [σ′e]Ld′Mu:i ⊣ H ′′′ PPiNEHoleNew

H = H ′, (u, e)← (i, {pi}, σ′e)
H ′′ = H, (u, e)← (i, {pi} ∪ {p}, σ′e) H ′′, p ⊢ d ⇑i d′ ⊣ H ′′′

H, p ⊢ [σe]LdMu ⇑i [σ′e]Ld′Mu:i ⊣ H ′′′ PPiNEHoleFound

H, p ⊢ σ ⇑i σ
′ ⊣ H ′ σ gets renumbered to σ′

H, p ⊢ ∅ ⇑i ∅ ⊣ H
PPiEnvTriv

H, p ⊢ σ ⇑i σ′ ⊣ H ′ H ′, p ⊢ d ⇑i d′ ⊣ H ′′

H, p ⊢ σ, x← d ⇑i σ′, x← d′ ⊣ H ′′ PPiEnv

Figure 5.3: Hole closure numbering postprocessing semantics
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our implementation is implemented using a simpler depth-first search (DFS) order. This

changes the order that hole closures are encountered and numbered. While the hole closure

number is not specified explicitly ordered value, certain orderings may be more intuitive to

the user. A choice of explicit hole numbering order is left to future work.

5.4.3 Unification with substitution postprocessing

The overall postprocessing operation is shown in Figure 5.4. The postprocessing is the

composition of the substitution postprocessing and the hole numbering postprocessing.

We can combine the two postprocessing steps into a single pass. Since the renumbering

step leaves most expressions unchanged, it is convenient to incorporate the hole numbering

rules into the closure and hole rules for substitution postprocessing. The reference imple-

mentation uses this single-pass postprocessing.

There is a nuance here: the hole numbering step limits the use of memoization of en-

vironments in the postprocessing process. In particular, a complexity arises because we

wish to update the list of parents of a hole each time a hole is encountered, forcing us to

re-postprocess environments. Thus we require that closure environments are always “shal-

lowly” postprocessed. This means that environments are postprocessed whenever a hole

is encountered, rather than whenever a closure is encountered. Lastly, since the λ-closure

postprocessing requires that the environment be postprocessed before performing a variable

substitution, environments must also be postprocessed whenever a (bound) variable is en-

countered. In summary, the PPI[]Closure rule (outside the evaluation boundary) does not

postprocess the closure’s environment, and the PPI[]Var and PPI[](N)EHole rules (inside the

evaluation boundary) postprocess the environment. There is also no need to match the clo-

sure around the hole, since closures and the environment will be handled by the substitution

algorithm.

This “fix” is not ideal because of the added complexity and confusion, but it does mostly

memoize the postprocessing process. We leave a more elegant implementation of the post-
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d ⇑ (H, d′) d postprocesses to d′ with hole closure info H

d ⇑[] d′ ∅,∅ ⊢ d′ ⇑i d′′ ⊣ H

d ⇑ d′′ ⊣ H
PP-Result

Figure 5.4: Overall postprocessing judgment

processing step for future work. A possible method is proposed in Section 9.1. However, we

note that we do not note any slowdown with postprocessing when we perform our empirical

performance evaluation in section 7.2.

5.4.4 Characterizing hole numbering

Metatheorem 5.4.1 summarizes the grouping of hole instances with the same environment

(hole instantiations) into the same hole closure. This checks that the numbering follows the

current implementation of hole instantiations.

Metatheorem 5.4.1 (Hole numbering postprocessing). Let ∅ ⊢ d ⇓ d1 and d1 ⇑i d2 ⊣ H.

1. If [σ]LMu:i ∈ d2 and [σ]LMu:i′ ∈ d2, then i = i′.

2. If [σ]Ld3Mu:i ∈ d2 and [σ]Ld4Mu:i
′ ∈ d2, then i = i′ and d3 = d4.

If we inductively follow the rules of the hole numbering algorithm, we expect that holes

with the same physical environment will have the same hole closure number i. The case of

non-empty holes has an additional clause about the nested expression inside the non-empty

hole: we expect it to be the same if the environment is the same, since these are the same

instantiation of the hole.

We note that we do not establish a correctness theorem like Metatheorem 4.3.2, since we

introduce a new interpretation of hole closure numbers. This changes the result from that

of Hazelnut Live.
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5.5 Fast structural equality checking

After the hole instance numbering is solved, there is an additional performance issue that is

related to a recursive traversal of the evaluation result. After evaluation and hole numbering,

there is an additional step (located in Model.update_program) that compares two evaluation

results (Result.t) using a structural equality check9.

This step is also very slow if repeated environments are re-traversed, so we memoize it by

environments. We manually implement a structural checking algorithm, DHExp.fast_equals.

For any leaf node (node with no subexpressions), the value of the node is compared for equal-

ity. For branch nodes (nodes with subexpressions), the nodes are equal if subexpressions are

equal and if the node’s properties are equal. Importantly, the equality check for environments

is simply to check if the environment identifiers are equal.

This step assumes that checking the equality of environment identifiers is equivalent to

checking the physical equality of environments. This statement is true by Metatheorem 4.3.3

for two environments in the same program evaluation, but this may not be the case for

comparing environments across separate evaluations. Thus we also need to structurally

check environments. Luckily, this is easily memoized so we only compare environments

once.

We do not feel that it is necessary to write out the judgments for this equality checking,

which are very similar to a simple recursive structural equality check. The operation of the

algorithm and its correctness should be fairly intuitive by the description.

9This step in Model.update_program is used to check if the program result changes. There may be more
efficient heuristics to detect a change in program output, such as comparing the programs’ external expres-
sions or detecting the type of edit action. However, we are simply concerned here with maintaining the
original intent of comparing structural equality. Moreover, this memoized structural equality check may be
useful whenever a structural equality check is required on expressions with environments.



Chapter 6

Implementation of fill-and-resume

6.1 Motivation

Consider the program shown in Listing 5. In this program, the calculation of x = fib 30

is arbitrarily chosen to represent a computationally-expensive operation. The result of this

program is

[f ← [∅]λx.{. . . }, x← 832040]LM1

Now, if we want to “fill” hole 1 with the expression x+2, then it would seem wasteful to have

to re-compute the value of x. After all, the computed value bound to x is exactly the same.

Moreover, we realize that the evaluation result stores the computed value of x in the hole’s

closure’s environment. Rather than re-evaluating the original program, we may instead fill

the hole in the evaluated program result, and then resume evaluation.

[f ← [∅]λx.{. . . }, x← 832040](x+ 2)

832040 + 2

832042

58
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let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

}

in x = f 30

in LM1

Listing 5: A sample program with an expensive calculation stored in a hole’s environment

Here we observe that the generalized closures surrounding holes and other stopped evalua-

tions allow us to capture the environment for future computation.

This is the fill-and-resume (FAR) operation that is described in Hazelnut Live [2]. It

is described in terms of a substitution-based evaluation semantics, and with respect to its

theoretic foundations in contextual modal type theory (CMTT). We provide the first imple-

mentation of such an operation. Hazelnut Live also describes a practical problem with fill

operations that take place over multiple edit actions (n-step FAR), with the suggestion to

“cache more than one recent edit state to take full advantage of hole filling.” We present

a structural diffing1 algorithm in section 6.2.1 that easily allows us to detect and fill a hole

from an arbitrary past edit state.

6.2 The FAR process

The fill-and-resume process can be broken into the following sequence.

1. Obtain a previous edit state with which to fill from the model.

2. Determine whether a fill operation is appropriate. If it is not, perform regular evalua-

tion of the program, and do not continue to the following steps.

1“Diffing” taken to mean the action of performing a (structural) diff operation between two edit states.
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3. If the fill operation is valid, then obtain the fill parameters (the internal expression to

fill, and the hole number from the previous edit state with which to fill).

4. Fill. Pre-process the evaluation result to prepare for (re-)evaluation.

5. Resume. Re-evaluate the filled expression.

6. Pos-process the evaluation result for display purposes.

7. Update the model with the evaluation results.

These steps will be described in greater detail in the following sections.

6.2.1 Detecting the fill parameters via structural diff

Following the notation from [2], the fill operation Jdfill/ufillKdresult indicates the fill of hole

ufill with expression dfill in the expression dresult. dresult is the past program result with

which to fill. We need a method to determine the fill parameters ufill and dfill.

A näıve algorithm for detecting fill parameters

One way to approach the problem of obtaining the hole number and filled expression is at

action time. When constructing an expression, we can check if the cursor lies in a hole

(either directly in an empty hole, or if there is an ancestor non-empty hole). When deleting

an expression, we can check if the cursor lies in a non-empty hole. However, this method is

somewhat short-sighted. What happens if we wish to make multiple edits, e.g., fill a hole

with the number 12? Then there are two actions, and the second action is not a hole fill

action.

LM1

1

12
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...

2 + 3 ∗ LM1

2 + LM2 ∗ LM1

2 + LM1

2 + 5

2 + (5)

2 + LM1 ∗ (5)
2 + 3 ∗ (5)

2 + 3 ∗ (5 + LM1)

1-step n-step

Figure 6.1: 1-step vs. n-step FAR

We may remedy this specific case by grouping together consecutive construction actions2.

However, we may also consider more complicated edit sequences that involve movement

and deletion actions, potentially outside of the hole. Consider the edit sequence shown in

Figure 6.1. The final edit state in this sequence is actually a valid fill of the first edit state

of the sequence3, such that u = 1 and d = 5 + LM1. However, an algorithm to trace the edit

actions to determine that this is a valid fill may be difficult, since there is an incomprehensible

mix of construct, delete, and movement edit actions. Even worse, the edits traverse outside

the original hole, which likely makes the algorithm intractable.

This method is only tractable for 1-step FAR or simple cases of grouped edit actiosn.

We wish for a more robust yet still simple solution that is independent of the edit sequence

between two states.

Structural diffing between two edit states

Instead of observing the edit action, we may instead attempt to find the root of the differ-

ence between any two edit states, and determine if that is the the difference gives valid fill

2Grouping together of actions is already performed to some level by the undo history, for visual purposes.
3There are actually multiple valid fill operations here. Another valid fill operation occurs between the third
edit state and all of the following edit states.
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d1 ⋭u
d d2 Some (non-empty) diff between d1 and d2.

d1 ▷ d2

d1 ⋭∅
∅ d2

SDiffNFDiffSome
d1 ▶

u
d d2

d1 ⋭u
d d2

SDiffFDiffSome

d1 ⋭∅
∅ d2

d1 ▷ d2
SDiffSomeNFDiff

d1 ⋭u
d d2

d1 ▶
u
d d2

SDiffSomeFDiff

d1 ▷
u
d d2 Any (possibly-empty) diff between d1 and d2.

d1 ⊵ d2

d1 ▷
·
∅ d2

ADiffNoDiffAny
d1 ▷ d2

d1 ▷
∅
∅ d2

ADiffNFDiffAny
d1 ▶

u
d d2

d1 ▷
u
d d2

ADiffFDiffAny

d1 ▷
·
∅ d2

d1 ⊵ d2
ADiffAnyNoDiff

d1 ⋭∅
∅ d2

d1 ▷ d2
ADiffAnyNFDiff

d1 ⋭u
d d2

d1 ▶
u
d d2

ADiffAnyFDiff

Figure 6.2: Structural diffing abbreviated judgments

parameters. This has the benefit of being a relatively simple algorithm, while overcoming

the limitation of the previous method and allowing for n-step FAR.

The structural diff algorithm takes two expressions as input and returns one of three diff

judgments4. d−1 ⊵ d−2 indicates no diff between d1 and d2. d−1 ▷ d−2 indicates a non-fill diff

from d1 to d2. d
−
1 ▶u+

d+ d−2 indicates a fill diff of hole u with expression d from d1 to d2.

We also define two shorthand operators for notational convenience. d−1 ⋭u+

d+ d−2 indicates

some (non-empty) diff from d1 to d2, which may or may not be a fill difference. d−1 ▷u
+

d+ d−2

indicates any diff (potentially no diff). Both notations are used to avoid writing multiple

similar rules, where the only change in the rules is diff judgment type. The behavior of these

notations is described in Figure 6.2.

For convenience, we define the judgment5 d−1 ∼ d−2 to mean that d1 and d2 are of the

same expression form. We use the term expression form or expression variant to indicate

4The following notations for diffing are chosen somewhat arbitrarily. The triangle seems appropriate because
it has a variant with an equals bar (⊵), as well as a “no fill” (▷) and “fill” variant (▶). The triangle is also
horizontally asymmetric, which mirrors the fact that the diff relation is asymmetric.

5The relation ∼ is already defined to mean type consistency when applied to types. This interpretation
applies when the relation is applied to internal expressions.
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d1 ∼ d2 d1 has the same expression form as d2

c1 ∼ c2
FEqConst

x1 ∼ x2

FEqVar
λx.d1 ∼ λx.d2

FEqLam

e1 e2 ∼ e′1 e′2
FEqAp

e : τ ∼ e′ : τ ′
FEqAsc

LMu ∼ LMu
′ FEqEHole

LdMu ∼ Ld′Mu
′ FEqNEHole

Figure 6.3: Form equality judgment

the variant types of DHExp.t. For example, empty holes and constants of the base type are

different expression forms. Empty holes and non-empty holes are also different forms per

the grammar. The rules shown in Figure 6.3 should require no further explanation.

We divide up the structural diffing algorithm into cases based on expression forms.

Expressions with different forms If the two expressions have different forms, then the

current node is necessarily the diff root. It is a fill diff iff the left expression is a hole

(DFNEqEHole, DFNEqNEHole, DFNEqNonHole).

These rules are shown in Figure 6.4.

Expressions with the same non-hole form If the two expressions have the same form,

then we need to check the root node and its subexpression(s). For expressions with

no subexpressions, there is a non fill diff iff the expressions differ (DFEqConstNEq,

DFEqConstEq, DFEqVarNEq).

For expressions with a single subexpression, we first check if there are any differences,

ignoring the subexpression. If there is a difference, then the current node is the non fill

diff root. Otherwise, we pass through the diff from the child node (DFEqLamNEq1,

DFEqLamNEq2, DFEqLamEq, DFEqAscNEq, DFEqAscEq).
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The last case to check for non-hole expressions are expressions with more than one

subexpression. In this case, we first check if there exist any differences outside the

subexpressions, which would result in a non fill diff rooted at the current node. Oth-

erwise, if there are no subexpression diffs, then the result is no diff. If more than one

subexpression has a diff, then the diff is a non fill diff rooted at the current node.

The last case is when exactly one child has a diff, which would be passed through.

This is the case for the binary function application expression form (DFEqApEq1,

DFEqApEq2, DFEqApEq3, DFEqApEq4).

In the minimal λ-calculus grammars specified for Hazel, the only expression form of

plural subexpression arity is function application, but the following description extends

to higher numbers of subexpressions (such as case expressions with arbitrary numbers

of rules.

These rules are shown in Figure 6.5.

Expressions with the same hole form The last case to consider is the comparison of two

hole expressions of the same form. The empty hole case is very similar to the nullary

subexpression case (DFEqEHoleNEq, DFEqEHoleEq). The non-empty hole case is

very similar to the unary subexpression case (DFEqNEHoleNEq, DFEqNEHoleEq1,

DFEqNEHoleEq2), except for a special rule that propagates non-fill diffs upwards to

be a fill diff rooted in the current hole (DFEqNEHoleEqProp). This allows for diffs

that are not rooted directly in a hole to be filled in their nearest non-empty hole parent

node.

These rules are shown in Figure 6.6.

The diff algorithm begins by performing the structural diff between the elaborated program

state of a past edit state dold and the current edit state dcur. A FAR operation is only valid

if the diff judgment is a fill diff dold ▶u
d dcur, which gives us the FAR parameters u and d.
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LMu ≁ d2

LMu ▶u
d2

d2
DFNEqEHole

LdMu ≁ d2

LdMu ▶u
d2

d2
DFNEqNEHole

d1 ̸= LMu d1 ̸= LdMu d1 ≁ d2

d1 ▷ d2
DFNEqNonHole

Figure 6.4: Structural diffing of different expression forms

c1 ̸= c2

c1 ▷ c2
DFEqConstNEq

c ⊵ c
DFEqConstEq

x1 ̸= x2

x1 ▷ x2

DFEqVarNEq

x ⊵ x
DFEqVarEq

x1 ̸= x2

λx1 : τ1.d1 ▷ λx2 : τ2.d2
DFEqLamNEq1

τ1 ̸= τ2

λx : τ1.d1 ▷ λx : τ2.d2
DFEqLamNEq2

d1 ▷
u
d d2

λx : τ.d1 ▷
u
d λx : τ.d2

DFEqLamEq

τ1 ̸= τ2

d1 : τ1 ▷ d2 : τ2
DFEqAscNEq

d1 ▷
u
d d2

d1 : τ ▷ud d2 : τ
DFEqAscEq

d1 ⊵ d′1 d2 ⊵ d′2
d1 d2 ⊵ d′1 d2

DFEqApEq1
d1 ⋭u

d d′1 d2 ⋭u′

d′ d
′
2

d1 d2 ⊵ d′1 d2
DFEqApEq2

d1 ⊵ d′1 d2 ⋭u
d d′2

d1 d2 ⋭u
d d′1 d2

DFEqApEq3
d1 ⋭u

d d′1 d2 ⊵ d′2
d1 d2 ⋭u

d d′1 d2
DFEqApEq4

u ̸= u′

LMu ▶u
LMu′ LMu

′ DFEqEHoleNEq
LMu ⊵ LMu

DFEqEHoleEq

u ̸= u′

LdMu ▶u
Ld′Mu′ Ld′Mu

′ DFEqNEHoleNEq
d ⊵ d′

LdMu ⊵ Ld′Mu
DFEqNEHoleEq1

d ▶u′

d′′ d
′

LdMu ▶u′

d′′ Ld′Mu
DFEqNEHoleEq2

d ▷ d′

LdMu ▶u
Ld′Mu Ld′Mu

DFEqNEHoleEqProp

Figure 6.5: Structural diffing of non-hole expressions
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u ̸= u′

LMu ▶u
LMu′ LMu

′ DFEqEHoleNEq
LMu ⊵ LMu

DFEqEHoleEq

u ̸= u′

LdMu ▶u
Ld′Mu′ Ld′Mu

′ DFEqNEHoleNEq
d ⊵ d′

LdMu ⊵ Ld′Mu
DFEqNEHoleEq1

d ▶u′

d′′ d
′

LdMu ▶u′

d′′ Ld′Mu
DFEqNEHoleEq2

d ▷ d′

LdMu ▶u
Ld′Mu Ld′Mu

DFEqNEHoleEqProp

Figure 6.6: Structural diffing of hole expressions

Performance tradeoffs of the two detection algorithms

The efficiency of the näıve approach is O(logE), where E is the number of expression nodes

in the program, if we assume that the depth of an expression node is logarithmic with respect

to the total number of expression nodes. That algorithm only has to traverse up the ancestors

to decide whether the edit lies in a hole.

The structural diff algorithm presented in this section is O(E), since it traverses each node

(once) until it finds a difference. However, if one travels backwards multiple edit states, then

the cost is O(SE), where S is the number of edit states compared using this algorithm. While

this is much more expensive than the previous algorithm, we assume that the program size

is relatively small, causing delay only on the order of milliseconds. However, it may be able

to find a valid fill-and-resume in many more cases than the previous algorithm, potentially

saving a much longer repeated evaluation time. An analysis of the tradeoff between the

number of edit states S to search and the expected performance gain is left for future work.

6.2.2 “Fill”: pre-processing the evaluation result for re-evaluation

Before beginning the re-evaluation, we would like to substitute all instances of the hole in the

previous evaluation result dresult with the substituted expression. Each time a the hole ufill

is encountered, it is replaced with the fill expression dfill. This way, we can simply reinvoke
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the evaluation function on the past program result and expect it to resume the evaluation.

There are a few nuances here that should be addressed. First of all, we acknowledge

another benefit of the generalized closure variant. If the environment was still baked into the

hole, and the hole was replaced with an expression, we would need an additional mechanism

to remember the hole’s environment. This becomes more messy when the hole doesn’t lie

directly in a hole closure (i.e., if the hole lies outside the evaluation boundary). Closures

are simply recursed through in this pre-processing step, and their environments will still be

available even when the hole gets replaced with the fill expression.

We note that the pre-processing acts on the un-post-processed previous evaluation result

dresult. This is because the internal expression directly from evaluation and the result after

post-processing have different properties or invariants. We do not want to invalidate the

properties that are expected to be upheld during evaluation, such as the fact that the body of

any λ-abstraction lies outside the evaluation boundary (whereas post-processing will modify

function bodies).

Another issue to tackle is the problem that closures were previously considered to be final

values, and would not be re-evaluated. Technically, we may re-evaluate closures; since the

evaluation function is idempotent, this will not yield the incorrect result, but it is needlessly

inefficient. However, we will need to re-evaluate closures during FAR re-evaluation, since the

fill expression will necessarily lie within some closure.

For efficiency reasons, we will only want to re-evaluate all closures in the result exactly

once. To do this, we set a flag for the closure that indicates that it should be re-evaluated.

This preprocessing step will recurse through dresult and set the flag to true for all closures,

which is characterized by Metatheorem 6.4.3. All closures that result from an evaluation

judgment will have the flag set to false. Only closures with the re-eval flag set will be

re-evaluated. Closures with the re-eval flag set to false will act as values and evaluate to

themselves, which is the same as the original evaluation behavior described in section 4.2.

We denote closures with the re-eval flag set to false using the established notation for closures
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[σ]d6, and denote closures with the re-eval flag set to true by JσKd7.

Finally, we may consider the issue of filling multiple instances of the same hole closure8.

If we substitute the hole, then we lose the information about the holes instance, and thus

cannot memoize the evaluations of the same hole instance by environment number, which

may cause the evaluation result to differ from an ordinary non-fill evaluation. A solution

to this is to introduce another DHExp.t variant FillExp(HoleClosureId.t, DHExp.t) that

indicates the hole closure number as well as the expression to fill. This will be denoted

using a hole with a subscript LdMi. The preprocessing expression will fill a hole ufill with this

expression rather than the expression dfill directly. During evaluation, this data structure

will facilitate the memoization of hole closures.

6.2.3 “Resume”: Modifications to allow for re-evaluation

Re-evaluation during fill-and-resume is mostly the same as regular evaluation, but now we

need to keep in mind the considerations from pre-processing the previous program result.

The updated evaluation rules for closures are shown in Figure 6.7. All closures in the

evaluation result will have been marked for re-evaluation by the pre-processing step. This

means that the closure environment will first be recursively re-evaluated, following by the

closure body. This ensures that the entire program result is fully evaluated9. We introduce

a (re-)evaluation judgment for environments σ− ⇓ σ′+, which simply maps the evaluate

operation over the bindings of an environment. Closures with the re-eval flag set to false

will have the regular evaluation rule.

Due to the recursive nature of re-evaluation of closure environments, we expect evalu-

6This allows previous discussions of closures to remain valid, since they take the interpretation that the
re-eval flag is set to false.

7Using the double-square bracket notation also reinforces the fact that re-evaluation is tied with fill-and-
resume, which also uses a double-square bracket notation.

8Hole closure refers to the interpretation from section 5.1: instances of hole ufill that share the same
(physical) environment.

9Note that there is now an “inversion” of evaluation order, in that we cannot expect the environment to be
fully evaluated before it is encountered in a closure. In an ordinary evaluation, we would expect all the
bindings in the environment to have been evaluated before they have been stored in the environment.
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σ′ ⊢ [σ]d ⇓ [σ]d
EEClosure

σ ⇓ σ′′ σ′′ ⊢ d ⇓ d′

σ′ ⊢ JσKd ⇓ d′
EREClosure

σ ⇓ σ′ ∅ ⊢ d ⇓ d′

σ, x← d ⇓ σ′, x← d′
EREEnv

∅ ⇓ ∅
EREEnvNull

Figure 6.7: Revised evaluation rules for closures

σ, ρ ⊢ d ⇓ d′ ⊣ ρ d evaluates to d′ given environment σ and previous fills ρ

σ, (ρ, i← d) ⊢ Ld′Mi ⇓ d ⊣ ρ
EFillMemoFound

(i← d) ̸∈ ρ σ, ρ ⊢ d′ ⇓ d′′ ⊣ ρ′

σ, ρ ⊢ Ld′Mi ⇓ d′′ ⊣ ρ′, i← d′′
EFillMemoNew

d ̸= LdMi σ ⊢ d ⇓ d′

σ, ρ ⊢ d ⇓ d′ ⊣ ρ
EFillOther

Figure 6.8: Fill-memoized re-evaluation

ation to reach each closure marked for re-evaluation exactly once. This is characterized in

Metatheorem 6.4.4.

The other difference that we have to deal with are memoizing the evaluation of the filled

hole expressions. Per the discussion of the pre-processing step, all filled expressions will exist

in a wrapper that indicates the hole number. We may simply memoize the results by that

hole number. This requires us to thread some state throughout our evaluation10.

In these judgments, we introduce a new fill memoization context ρ : i 7→ d, a mapping

of hole closure numbers to expressions11. A new fill-memoized evaluation judgment σ−, ρ− ⊢

d− ⇓ d′+ ⊣ ρ′+ describes the evaluation with memoization of hole fills. When a hole closure

number is encountered for the first time, the expression is evaluated normally and added to ρ;

10We have the EvalState.t object for threading state through evaluation, which helps with this implemen-
tation.

11The symbol ρ was chosen arbitrarily. It is simply the Greek letter before σ.
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ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α
Program.t

e

duneval

deval

deval

drenumbered, H

Figure 6.9: Previous action call graph

otherwise, the evaluated result of the fill is simply looked up from ρ. Note that memoization

requires ρ to be threaded throughout the evaluation, i.e., it is treated both as an input and

output of the evaluation judgment.

This fill-memoized evaluation judgment subsumes the normal evaluation judgment. For

all non-hole-fill expressions, it performs the normal evaluation judgment and returns the fill

memoization context unchanged.

6.2.4 Post-processing resumed evaluation

The postprocessing algorithm remains unchanged from before. Note that an evaluated pro-

gram result should never include either of the new forms LdMi or JσKd; these should all have

been encountered and evaluated out. In other words, the evaluation result from re-evaluation

during a FAR should be indistinguishable from the evaluation result from a regular evalua-

tion, and thus the postprocessing process is unchanged.
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ModelAction.EditAction.t

Action_Exp.syn_perform Model.t

Elaborator_Exp.elab

DHExpDiff.diff_dhexp

FillAndResume.preprocess

Evaluator.evaluate

EvalPostprocess.postprocess

UndoHistory.t

Result.t

α
Program.t

e

duneval

no fill diff

u, d

dpreprocess

deval

deval

dpostprocess, H

list(Program.t)

Figure 6.10: Current action call graph

6.3 Entrypoint to the FAR algorithm

An abstracted call graph for the action model (the process of responding to an action, up

to evaluation) in Hazel is diagramed in Figure 6.9. Red boxes indicate important data

structures. Black boxes indicate important steps in the process of responding to an action.

The lines between boxes roughly indicate the flow of the program and other important data

structures related to the process.

An edit action triggers the bidirectional action semantics, which generates an updated

program edit state. This is then elaborated to an internal expression, evaluated, and then

postprocessed. The results of evaluation are stored in Result.t.

The updated abstract call graph is shown in Figure 6.10, with updated blocks shown in

blue. Fill and resume is fundamentally an operation on internal expressions, so we attempt

to detect a hole fill operation after elaboration of the current edit state. The structural

diff operation requires information about at least one previous edit state from the model’s
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UndoHistory.t. The result of the previous evaluation is preprocessed, before being evaluated

(using the updated evaluation judgments) and postprocessed as usual.

Since this is a very high-level view of the program, many details are abstracted out. For

example, the evaluation function is memoized by the function Program.get_result, which

facilitates the normal evaluation process. We will need to modify this memoization to also

memoize the FAR evaluation results.

6.4 Characterizing FAR

We provide a characterization of the FAR process here via a set of metatheorems and informal

justifications, as in previous sections on evaluation and the postprocessing process.

Hazelnut Live provides two metatheorems to describe the overall FAR process. We will

restate them here for completeness. Proofs may be found in [2]. Metatheorem 6.4.1 describes

the static semantics of filling. If the filled expression matches the assigned type of the hole

in the hole context, then the type of the overall evaluation result should not change. This is

a (type) preservation property. We assume that the premise is true by the action semantics,

elaboration process, and structural diffing algorithm: any hole fill detected by structural

diffing should be well-typed according to automatic empty-holes and casts inserted by the

action semantics and elaboration process.

Metatheorem 6.4.1 (Filling (FAR static correctness)). If ∆, u :: τ ′[Γ′]; Γ ⊢ d : τ and

∆;Γ′ ⊢ d′ : τ ′ then ∆;Γ ⊢ Jd′/uKd : τ .

The dynamic correctness of fill-and-resume depends on the commutativity property stated

in Metatheorem 6.4.2. Here, the notation Jd/uKd′ is intended to mean the entire FAR process,

not just the fill operation as we interpret it in the rest of this thesis. The proof is also provided

in [2], as is the definition of the closure of evaluation stepping d1 7→∗ d2. An important point

to note is that the proof of commutativity requires a functionally pure language (i.e., with

no side effects) such as Hazel.
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Metatheorem 6.4.2 (Commutativity (FAR dynamic correctness)). If ∆, u :: τ ′[Γ′];∅ ⊢

d1 : τ and ∆;Γ′ ⊢ d′ : τ ′ and d1 7→∗ d2 then Jd′/uKd1 7→∗ Jd′/uKd2.

In addition to the metatheorems governing the overall static and dynamic correctness of

FAR, we may also characterize the intermediate steps, since we break up FAR into sequential

fill and resume steps. Similar to Metatheorem 4.3.1, we characterize both the fill and resume

steps by their effects on closures. This time, the focus is on re-evaluatable closures. We

expect that the fill step marks all closures in the result for re-evaluation Metatheorem 6.4.3,

and that the resume step reaches evaluation for all re-evaluation Metatheorem 6.4.4.

These metatheorems may not be necessary to prove commutativity, but they illustrate

the behavior of the fill-and-resume steps: they demonstrate that re-evaluation reaches every

expression within the evaluation boundary, including and especially any filled expressions.

In other words, they check the proper coverage of the fill and resume steps when handling

closures. These theorems are also both straightforwardly justified by the rules for the fill

operation and evaluation.

Metatheorem 6.4.3 (Fill operation). If ∅ ⊢ d ⇓ d1, and [d2/u]d1 = d3, then ̸ ∃[σ]d4 ∈ d3.

Metatheorem 6.4.4 (Resume operation). If ∅ ⊢ d ⇓ d1 and [d2/u]d1 = d3 and ∅ ⊢ d3 ⇓ d4

then ̸ ∃JσKd5 ∈ d4.

6.5 FAR examples

6.5.1 Motivating example

We revisit the program from Listing 5, reproduced in Figure 6.11a. This hole fill operation is

very simple, replacing a hole with a value. We also observe the behavior of the preprocessing

operation, which marks closures for re-evaluation and encapsulates filled expressions with

the hole closure number for memoization.
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let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

}

in x = f 30

in LM1

(a) Previous edit state

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

}

in x = f 30

in x + 2

(b) Filled edit state

[x← 832040]LM1:1

(c) Previous program result

u = 1, d = x+ 2

(d) Detected fill parameters

Jx← 832040KLx+ 2M1

(e) Preprocessed program result

832042

(f) Resumed program result

Figure 6.11: FAR simple example

6.5.2 Introducing and removing static type errors

Now, consider the program shown in Figure 6.12. In this fill operation, we introduce a new

static type error (non-empty hole). The non-empty hole is inserted automatically during the

action semantics and appears naturally in the diff, so we do not need to perform any special

handling for it. Similarly, in the case of Figure 6.13, a non-empty hole is removed by filling

with a type-consistent expression. This allows static type errors to be “fixed” and evaluation

to resume past where it had stopped.

6.5.3 Example requiring recursive evaluation of closure environ-

ment

In Figure 6.14 we fill a hole that does not exist directly in the result, but exists in a hole clo-

sure environment. This illustrates the need to recursively re-evaluate closure environments.
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2 + LM1

(a) Previous edit state

2 + Lλ x . { x }M1

(b) Filled edit state

2 + [∅]LM1

(c) Previous program result

u = 1, d = Lλx.xM1:1

(d) Detected fill parameters

2 + J∅KLLλx.xM1M1

(e) Preprocessed program result

2 + [∅]L[∅]λx.xM1:1

(f) Resumed program result

Figure 6.12: FAR introduce static type error example

2 + Lλ x . { x }M1

(a) Previous edit state

2 + 3

(b) Filled edit state

2 + [∅]L[∅]λx.xM1:1

(c) Previous program result

u = 1, d = 3

(d) Fill parameters

2 + J∅KL3M1

(e) Preprocessed program result

5

(f) Resumed program result

Figure 6.13: FAR remove static type error example

let x = LM1 in

LM2

(a) Previous edit state

let x = 2 in

LM2

(b) Filled edit state

[x← [∅]LM1:1]LM2:1

(c) Previous program result

u = 1, d = 2

(d) Fill parameters

Jx← J∅KL2M1KLM2:1

(e) Preprocessed program result

[x← 2]LM2:1

(f) Resumed program result

Figure 6.14: FAR fill hole in hole environment example
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6.5.4 Hole fill expression memoization example

The program in fig. 6.15 shows the necessity of memoizing by hole closure number, in or-

der to preserve the same result as if evaluating normally. In this example, we have two

instances of hole 1 in the result. Since there is only one instantiation of hole 1, these are

two instances of the same hole closure. If there were no memoization of filled expressions,

then the filled expression f 1 would be evaluated twice. This is problematic because func-

tion application generates new environments (and new environment identifiers), so the two

instances would have different closures and thus be considered two separate hole closures,

even when they come from the same instantiation. Since the filled expression is memoized,

the two instances of the hole have closures with the same environment identifier (indicated

by the same superscript i on the closure environments).

The necessity of memoization in this case is related to the idea of the “inversion” of

evaluation mentioned in section 6.2.3: during normal evaluation, we expect that a variable

may be referenced in multiple places after it is evaluated. However, during a resumed

evaluation, we may encounter multiple unevaluated instances of the same instantiation;

the first time it is encountered and evaluated is the de facto “first instantiation” of that

expression.

6.5.5 Noteworthy non-examples

Dynamic type errors

One may wonder if dynamic type errors (cast failure) have any nice relation to fill-and-

resume, but it turns out that they are not treated much different than other non-hole

expressions. We may not fill a cast failure directly, because it is not in a hole, and no

environment is recorded for it12. We may only remove a cast failure if it lies in a non-empty

hole that is filled.

12With generalized closures, it is not hard to save the environment of a failed cast, but this is not very useful.
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let f = λ x . LM1 in

let x = LM2 in

x + x

(a) Previous edit state

let f = λ x . LM1 in

let x = f 1 in

x + x

(b) Filled edit state

[f ← [∅]λx.{LM1:1}]LM2:1
+

[f ← [∅]λx.{LM1:1}]LM2:1

(c) Previous program result

u = 2, d = f 1

(d) Fill parameters

Jf ← J∅Kλx.{LM1:1}KLf 1M1
+

Jf ← J∅Kλx.{LM1:1}KLf 1M1

(e) Preprocessed program result

[x← 1]iLM1:1 + [x← 1]iLM1:1

(f) Resumed program result

Figure 6.15: FAR hole closure memoization example

We may introduce new cast failures by filling an expression that is assigned to type hole

(something of dynamic type). However, this is no different than introducing any well-typed

expression and performing normal evaluation.

Thus the only interesting cases of introducing or remoing holes lies in the case of static

type errors (non-empty holes) as described previously.

Infix operators

Filling holes in an infix operator sequence may not result in a hole fill due to infix operator

precedences, despite the initial appearance. Consider the example shown in Figure 6.16. Say

we construct a binary plus operator in the hole. One might expect the fill operation to be

JLM2+ LM1/1Kdresult. However, we need to be careful: the multiplication operator has a higher

precedence than the addition operator, causing the AST to have a different structure outside

of where hole 1 was in the original edit state. It may be more clear if we write the latter
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1 * LM1 * 2

(a) Previous edit state

1 * LM2 + LM1 * 2

(b) Filled edit state

Figure 6.16: FAR infix operator fill

edit state with its implicit parentheses: (1 * LM2) + (LM1 * 2).

If, however, hole 1 in the original edit state was a parenthesized expression, and the sum

expression shape was constructed inside the parenthesized expression, then the AST wouldn’t

change (as a parenthesized expression has higher precedence than the outer multiplication

operation) and it would be a valid fill operation.

6.6 Tracking evaluation state

It may be useful to thread some state throughout the evaluation process. This means that

changes to this state by an earlier invocation to evaluate will affect later evaluations.

The concept of keeping state has already appeared in several contexts. For postprocess-

ing, the memoized hole closure info keeps track of seen environments (section 4.3.3). For

evaluation, we keep track of the next unique environment identifier and memoize the evalu-

ation of filled expressions (section 6.2.3). A theoretical discussion of statefulness is revisited

in section 8.2.

This becomes relevant again (with respect to evaluation) because resuming evaluation

requires us to store the state after evaluation, and restore the state after evaluation. Adding

more state variables also makes the implementation messier by increasing the number of

variables to pass to and return from each of the numerous calls to Evaluator.evaluate.

The nice solution to this is to group together all evaluation state under a single data struc-

ture, EvalState.t. This one state variable is passed around to all calls to evaluate, and is

stored to and restored from Result.t, which stores all information about a program’s eval-

uated result (including the evaluated expression and the hole closure information). Adding
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state then becomes trivial, because we only have to modify this data structure rather than

all of the calls to Evaluator.evaluate.

For sake of brevity, we will not update the judgments to include this state.

6.6.1 Step counting

With the EvalState.t data structure, it is now trivial to keep track of evaluation statistics.

Sample statistics might include step counting and number of times a particular evaluation

trace has been paused and resumed.

Step counting may be implemented simply by incrementing the count on each call to

Evaluator.evaluate. This may be useful to stop long-running executions after a particular

number of (possibly user-specified) execution steps in order to prevent program crashes. It

is also useful for our purposes to track how efficient fill-and-resume is: during a fill opera-

tion, one may observe the difference in the number of steps before and after the resumed

evaluation, and compare it to the case if the evaluation had begun from scratch.

6.7 Differences from the substitution model

The FAR operation is much simpler when evaluating with substitution rather than with

environments. With substitution, we eliminate the need for pre- and post-processing steps,

and dealing with re-evaluating closures. However, this comes at the cost of not being able

to memoize repeated instances of the same hole closure. The original description of FAR

from [2] is reproduced in Appendix B.2. The hole closure notation from [2], in which the

hole closure is represented using a subscript, is also used here, since the substitution model

doesn’t have the concept of separate (generalized) closures.

What remains the same between the environment model and the substitution model is

the need for an algorithm to detect the fill parameters, for which the structural diff algorithm

presented in section 6.2.1 is still applicable.
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The notation Jd/uKd′ = d′′ is used to indicate the FAR operation in the Hazelnut Live

description, whereas we use it here to mean the fill operation only. This brings up the

question of whether we can also perform FAR in a single step, similar to Appendix B.2, rather

than breaking it into disjoint fill and resume passes. This is possible by either substituting

the filled hole during evaluation. While this offers the same benefit of lazy substitution like

evaluation with environments, there is some difficulty with lazily substituting a hole u if the

fill expression contains a hole with the same hole number u.



Chapter 7

Evaluation of performance

To evaluate performance, benchmarks were carried out using the TimeUtil.measure_time

utility. Benchmarks were carried out on Google Chrome 99 on Debian 11 on an Intel i3-

2100 CPU. The times shown are a mean of three trials. Evaluation step counts are tracked

in EvalState.t and count the number of calls to Evaluator.evaluate as described in

section 6.6.1.

There are a number of factors that may affect the consistency of the elapsed time bench-

marks. Such factors include the quality of JSOO-generated Javascript, specifics of the

Chrome V8 Javascript engine, and millisecond precision of the timing function.

Evaluation of performance of the environment model of evaluation and of the memoized

hole tracking are performed on the dev branch and the eval-environment branches of the

Hazel repository. The latter branch implements our changes.

The demonstration of FAR is performed on the fill-and-resume-backend branch. This

branch is based on the eval-environment branch, and implements a one-step FAR opera-

tion. This branch does not achieve parity with the theoretical model of FAR presented in

this work; unfinished work and future improvements to the current implementation of FAR

are described in section 9.2.

81
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7.1 Evaluation of performance using the environment

model

To evaluate the performance of evaluation using the environment model, we benchmark the

performance of a computationally-expensive function, the tree-recursive Fibonacci function.

This function is chosen because it is computationally expensive and does not have a deep

recursion depth1. It is also a complete program, i.e., it does not have holes and the hole

renumbering and postprocessing steps are not of concern here.

For this experiment, the builtin variables and functions are removed. Restoring the

builtins would be very similar to the second program variation described in section 7.1.2.

7.1.1 A computationally expensive fibonacci program

The quantitative results of this experiment are shown in Table 7.1. The results of evaluat-

ing Listing 6 for various values of n on the dev and eval-environment (abbreviated e-e)

branches are shown in Figure 7.1. The eval-environment decreases evaluation time by a

small, roughly-constant factor for all values of n.

7.1.2 Variations on the fibonacci program

We try out a few variations of the fib(n) function, shown in Listing 6. Results are collected

for n ∈ {22, 23, 24, 25, 26}2. The first variation is shown in Listing 7, which involves more

global variables. The second variation is shown in Listing 8, in which an additional branch

is added. This branch is never taken (as the third rule’s pattern will always match). We

vary the number of extra global variables and the length of the unevaluated branch.

However, the two variations show the difference between evaluation with environments

1This is because Hazel does not implement tail-call optimization (TCO), and thus would overflow the stack
for most iterative algorithms.

2These numbers were chosen somewhat arbitrarily. They are large enough to allow for reproducible results,
and small enough to prevent excessively long runtimes.
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let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

Listing 6: A computationally expensive Hazel program with no holes

and evaluation with substitution. If we introduce additional global variables as in the first

variation, we observe the behavior in Figure 7.2. The performance of the evaluation with

substitution is virtually unchanged, while the performance of evaluation with environments

increases. We observe that the increase in evaluation time is not linear. We expect the

slowdown to be logarithmic with respect to the number of elements in the environment. On

the other hand, if more variables are introduced in an unevaluated branch as in the second

variation, then we observe the reversal of the effects on the branches. This is shown in

Figure 7.3. The evaluation time when using substitution increases linearly with respect to

the length of the unevaluated branch, but evaluation time using environments is roughly

unchanged.

These variations show the expected behavior of the two evaluation methods. Often,

the performance difference may not be significant, because there is no inherent change in

the overall runtime complexity. Substitution eagerly substitutes at binding time, whereas

using environments lazily substitutes at lookup time. Introducing additional global vari-

ables increases the number of variables in each environment, slowing down evaluation with

environments. However, this does not slow down substitution because these variables are

never encountered after being bound. On the other hand, substitution necessarily traverses

unevaluated branches, whereas evaluation with environment never reaches those branches.
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let a = 0 in

let b = 0 in

let c = 0 in

let d = 0 in

let e = 0 in

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

end

} in

f 25

Listing 7: Adding global bindings to the program in Listing 6

let f : Int → Int =

λ x . {

case x of

| 0 ⇒ 0

| 1 ⇒ 1

| n ⇒ f (n - 1) + f (n - 2)

| 0 ⇒ f 0 + f 0 + f 0 + f 0 + f 0

end

} in

f 25

Listing 8: Adding variable substitutions to unused branches to the program in Listing 6
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Variables in unused branch Extra global variables
n Regular 2 4 6 8 10 2 4 6 8 10

22 334 394 509 539 658 677 339 305 302 339 336
23 478 599 695 835 1116 1107 524 442 452 452 455
24 775 929 1214 1332 1518 1686 744 700 729 794 708
25 1233 1502 1874 2310 2398 2723 1171 1189 1134 1104 1231
26 2019 2391 2939 3399 3872 4417 1841 1747 1761 1773 1780

(a) dev branch

Variables in unused branch Extra global variables
n Regular 2 4 6 8 10 2 4 6 8 10

22 255 267 276 242 245 243 330 384 417 435 519
23 406 374 376 358 366 330 497 576 573 593 660
24 578 558 559 591 561 569 775 857 911 912 1037
25 851 883 871 864 888 908 1209 1363 1469 1473 1684
26 1318 1388 1382 1398 1399 1415 1935 2262 2302 2356 2492

(b) eval-environment branch

Table 7.1: Time (ms) to compute fib(n)
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Figure 7.1: Performance of evaluating fib(n)
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Figure 7.2: Performance of evaluating fib(n) with extra global variables

0 2 4 6 8 10

Variables in unused branch

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

R
el

at
iv

e
el

ap
se

d
(n

or
m

al
iz

ed
to

0
ex

tr
a

va
ri

ab
le

s)

dev n=22

dev n=23

dev n=24

dev n=25

dev n=26

e-e n=22

e-e n=23

e-e n=24

e-e n=25

e-e n=26

Figure 7.3: Performance of evaluating fib(n) with an unused branch



CHAPTER 7. EVALUATION OF PERFORMANCE 87

7.2 Postprocessing performance

Consider the set of programs described by Listing 4, which motivate the memoization of hole

tracking (section 5.3) and the fast structural equality checking algorithm (section 5.5).

We illustrate the performance issues by evaluating the performance issue. The results

are shown in tabular form in Table 7.2, and visually in Figure 7.4a. Due to the exponen-

tial blowup in elapsed time, we stop recording performance after fifteen consecutive let

statements.

The exponential performance blowup occurs in three places: in evaluation (due to eager

substitution of holes), in hole numbering during postprocessing, and in the structural equality

check in Model.update_program. All three slowdowns occur due to the lack of memoization

of hole closures when traversing a dense graph using a tree traversal algorithm.

We compare the performance to evaluation on the eval-environment branch which

implements memoization of environments in hole numbering and structural equality. This

is shown in Table 7.2, and visually in Figure 7.4b. The evaluation time is greatly improved;

total evaluation time remains negligible and never exceeds 7ms. This is the kind of evaluation

time a user may expect for an ostensibly simple program.

7.3 FAR performance

We explore two sample edit histories and the effect of FAR on the number of evaluation

steps. The current implementation does not look back multiple edit states (i.e., it is a 1-step

FAR).

7.3.1 A motivating example

We have an example edit sequence shown in Table 7.3. This shows a possible edit sequence

around the motivating example in Listing 5. In it, we have an expensive calculation, and
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dev branch eval-environment branch
Evaluate Postprocessing Equality Evaluate Postprocessing Equality

1 0 0 0 0 1 0
2 0 0 0 0 1 0
3 1 2 0 0 1 0
4 1 1 1 1 0 0
5 1 1 2 0 3 0
6 5 1 3 1 0 0
7 4 5 6 2 2 0
8 3 3 14 0 0 0
9 6 18 33 1 0 1
10 14 29 61 0 0 0
11 13 41 91 3 2 0
12 25 145 203 2 0 1
13 65 578 383 2 0 0
14 147 2399 924 1 3 1
15 226 16597 1603 3 0 1
16 1 0 1
17 2 1 1
18 0 3 1
19 0 0 1
20 3 4 0
21 2 0 1
22 0 2 1
23 0 3 1
24 0 6 1
25 1 4 1
26 1 2 1

Table 7.2: Performance of program illustrated in Listing 4
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Figure 7.4: Performance of evaluating program in Listing 4
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hope to resume the result without redoing the expensive computation. The table shows

the sequence of edit states (excluding movement edits). For each edit state, we display

the number of steps using regular evaluation, as well as the number of steps for FAR if

there is a valid fill operation. We also show the difference in evaluation steps between the

FAR evaluation and the regular evaluation (Step ∆), as well as the cumulative difference in

evaluation steps. For operations with no valid fill operation, the step difference is zero.

We observe that for the operations before the introduction of the heavy computation

f 25, there is not a significant difference in the number of steps between normal evaluation

and FAR evaluation (when applicable). However, the three steps after the introduction

of this computation are valid 1-step FAR operations, and the FAR operation is extremely

less expensive. A visualization for this is shown in Figure 7.5. With Figure 7.5a, all edit

states after the introduction of the heavy computation also involve the fibonacci calculation.

However, in Figure 7.5b, with FAR we see that subsequent calculations roughly only evaluate

the filled expression. The cumulative difference in evaluation steps quickly adds up, as

evidenced by Table 7.3.

7.3.2 Decreased performance with FAR

Another sample program is shown in Table 7.4. This explores the result of a simpler and

perhaps more average program, without an expensive computation. We observe that in

this case, the fill operations are typically more expensive than regular operations. This is

largely due to the lack of memoization of the re-evaluation of environments in closures, which

is described as future work in section 9.2.2. However, the number of evaluation steps are

reasonably on the same order of magnitude as normal evaluation.

We note that we only provide evaluation step counts rather than benchmark times for this

discussion of FAR. We do not find that benchmarking evaluation is necessary, as it is more or

less unchanged from regular evaluation (except for treatment of closures). It may be useful

to benchmark the structural diffing algorithm, but this may be more important once a multi-
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step FAR is implemented. The current structural diffing with a one-step FAR is a linear

pass over the external expression tree, which should have performance characteristics similar

to other linear passes over the external expression such as type-checking or elaboration.

These algorithms are not a performance bottleneck when compared to näıve algorithms that

traverse internal expressions with environments.
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Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

let f = ... in

let a = LM1 in

LM2

7 - 0 0

let f = ... in

let a = f in

LM2

12 21 9 9

let f = ... in

let a = f LM3 in

LM2

17 - 0 9

let f = ... in

let a = f 2 in

LM2

58 69 11 20

let f = ... in

let a = f 25 in

LM2

4762964 - 0 20

let f = ... in

let a = f 25 in

LM2 + LM4

4762966 12 -4762954 -4762934

let f = ... in

let a = f 25 in

LM2 + 2

4762966 21 -4762954 -9525879

let f = ... in

let a = f 25 in

a + 2

4792967 13 -4792954 -14288813

Table 7.3: A program edit history with an expensive computation
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Figure 7.5: Number of evaluation steps per edit in Table 7.3
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Program Steps Steps Step ∆ Cumulative
(w/ FAR) Step ∆

LM1 1 - 0 0

let LM6 = LM5 in

LM7
2 3 1 1

let x = LM5 in

LM7
3 - 0 1

let x = LM5 in

let LM12 = LM11 in

LM13

4 5 1 2

let x = LM5 in

let y = LM11 in

LM13

5 - 0 2

let x = LM5 in

let y = 4 in

LM13

6 9 3 5

let x = LM5 in

let y = 4 in

LM13 * LM14

8 8 0 5

let x = LM5 in

let y = 4 in

x * LM14

9 14 5 10

let x = LM5 in

let y = 4 in

x * y

10 11 1 11

let x = 3 in

let y = 4 in

x * y

11 6 -5 6

Table 7.4: A sample edit history for a simple program
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Discussion of theoretical results

8.1 Expected performance differences between evalu-

ating with substitution versus environments

Section 7.1 discusses the empirical results of a few experiments on the performance of evalua-

tion using the substitution method as originally described and implemented, and evaluation

using environments as described in this paper. This shows that the performance gain is

highly dependent on the program, and it is not unexpected to see the performance of the

substitution model of evaluation outperform the same program evaluated using the environ-

ment model. Thus it is difficult to provide a general result about which model is preferred,

strictly for performance reasons. Instead, we only provide the highly-parameterized results

in the results of the two variations of the fibonacci program.

A way to remedy this is to collect information about expected or average programs, as

described in section 9.3. The same is true to determine average performance characteristics

of FAR, although this would be related to collecting editing behavior, not characteristics of

the program itself.

A non-performance reason may tip the scale in favor of either using the substitution

model or the evaluation model. As observed throughout this text, the substitution model

95
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is much simpler to formally state and implement, and may be sufficient in most use cases.

However, environments allow for memoization. Environments also allow an implementation

to be more amenable to lower-level implementations, because it does not require the runtime

to keep a representation of the internal language (whereas substitution does). However, it is

also important to keep in mind that environments in this implementation are closely tied to

an immutable data structure (due to the frequency of copying and the efficiency of structural

sharing), which may frustrate low-level implementations.

8.2 Purity of implementation

The purity of implementation is a recurring theme. While it should not affect the capability

of the implementation, there is a strong urge to keep the implementation pure. Elegance,

complexity, and runtime overhead is traded off for purity. The main decisions regarding

purity are summarized here, and left for the consideration of future implementors.

One offender of performance is the use of the fixpoint form when evaluating recursive

functions. This involves extra evaluation steps for unwrapping fixpoints, and can be avoided

with self-referential data structures, and more easily implemented using refs.

The evaluation process becomes stateful. Every call to Evaluator.evaluate takes an

EvalState.t as both input and output. This maintains state but is still technically pure,

much like a state monad. This state includes the environment identifier generator, the fill

memoization context, and evaluation statistics such as evaluation steps. This complicates

the formalization and the implementation, as we now have additional inputs and outputs to

each evaluation judgment. This is also likely less performant than if some global state were

used instead. This global state would have to be reset at the beginning of each evaluation

or resumed evaluation.
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8.3 Summary of metatheorems

Metatheorems 4.1.1 and 4.1.2 establish the type-safety of evaluation with environments.

Metatheorems 4.2.1 to 4.3.1 characterize the evaluation boundary and the results of substi-

tution postprocessing. Metatheorem 4.3.2 states that the substitution-postprocessed result

of evaluation with environments should match the result when evaluating using substitution.

Metatheorem 5.4.1 describes the behavior of the hole closure numbering operation. Metathe-

orems 6.4.1 to 6.4.2 characterize the static and dynamic correctness of FAR. Metatheo-

rems 6.4.3 to 6.4.4 characterize closures in the outputs of the fill and resume steps of the

FAR algorithm.

Most of these theorems describe the expected behavior of the result, such as the conditions

on closures in the result. Thus we may think of these metatheorems as “checksum theorems”

to informally check the correctness of the work. The correctness of these metatheorems is

informally justified using by considering relevant inference rules.

Additionally, we may define “adequacy theorems,” which state that the result of the

implemented algorithm matches the inference rules, and implement a series of checks in

the code to test that this is indeed the case. However, Hazel does not have such a testing

framework in place, and a more rigorous test framework is left for future work.

8.4 FAR for notebook-style editing

One of the primary qualities of computational notebooks is the ability to run sections of the

code at a time, primarily for computational purposes. We may reproduce this behavior in a

limited way. This is an extension of the discussion from the introduction of Hazelnut Live

[2].

We may model a notebook-style program as a linear sequence of sections or cells. Each

cell, can be modeled as a set of variable bindings: the “outputs” of evaluating the section.

We may interpret a let statement in Hazel to be a single-output section.
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%% section 1

x = 5;

y = 4;

%% section 2

z = 3 * x + y;

x = 5 * z;

%% section 3

% a = ...

(a) Sample notebook-style program in MATLAB

let x = 5 in

let y = 4 in

let z = 3 * x + y in

let x = 5 * z in

LM1

(b) Sample notebook-style program in Hazel

Figure 8.1: Comparison of notebook-style programs in MATLAB and Hazel

Consider the sample notebook-style program shown in Figure 8.1a. Here, we have two

sections, which compute three different variables. If we add a third section containing the

statement a = x + y;, then we may obtain the value of a by only executing the third section

and not re-evaluating the first two sections, because the workspace is saved.

Now, consider the comparable program in Figure 8.1b. If the user types in the expression

x + y or let a = x + y in LM1, then a fill operation is detected, and the new expression

is computed with the environment stored in hole 1’s closure. In fact, if the user continues to

make any changes below the fourth let expression, they will all be considered to be valid

n-step fill operations against the edit state shown in Figure 8.1b, so the first four statements

never have to be re-evaluated. As the user continues to edit downwards, new holes will be

created and the newest edits may be considered fill operations from more recent edits.

Additionally, we have the benefit of reproducibility not present in MATLAB. In most

notebook-style editors, such as MATLAB’s live editor, running sections out of order may

cause a different program output than if the program had been run in order. For example,

if the user runs the section section twice after evaluating the first section Figure 8.1a is run

twice in a row, then the output would be different than if the program was run from start to

finish. On the other hand, the Hazel program in Figure 8.1b will always give the same result

as if evaluation had begun from the top, as guaranteed by the commutativity property of

FAR.
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The limitation of using Hazel as a computational notebook is that the fill-and-resume

operation is limited to cases where there is a hole in a previous edit state as a parent

of the root of the diff. If a user programs by always appending to or editing near the

bottom of their program, FAR will be very beneficial because most edits will lead to valid fill

operations. It may be difficult to quantify the real performance benefit due to large variations

in programming styles. Different heuristics for choosing a past edit state to compare, as

discussed in section 9.2.3, will also affect the performance of FAR.

8.5 Summary of generalized concepts

The work performed for FAR leads us to the following nice generalizations of some of the

concepts we’ve encountered through this work.

8.5.1 Generalized closures and the evaluation boundary

Generalized closures form an integral part of this implementation. In the literature, the

term “closure” usually refers to function closures, but we find that allowing for a general

container expression with a bound environment is extremely useful for our implementation.

Not only do they tidy up the implementation by “factoring out” environments from the nu-

merous expression forms that require them1, but they characterize the evaluation boundary:

expressions in the evaluated result that exist within a closure are “paused” evaluations that

may be resumed later. Separating holes from closures also helps to facilitate fill-and-resume

because we wish to substitute the hole with dfill without discarding the environment. In

summary, closures are harmonious with Hazel’s live environment characteristics.

1This is true even in the case of evaluation with substitution, by separating environments from hole closures.
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8.5.2 A generalization of non-empty holes

Non-empty holes play a central hole in Hazel’s ability to provide continuous feedback, as

well as in the ability to resume computation in FAR. We may interpret an empty hole as

encapsulating a well-formed expression in some incompatible outer expression.

It may be helpful to also imagine that the entire program lies in a non-empty hole. In this

interpretation, regular program evaluation (from the start) may be considered a degenerate

case of fill-and-resume, where the root of the diff is a non-fill diff that gets propagated up

to this non-empty hole. This hole will also nicely serve as the parent for all holes in a non-

complete program in the HoleClosureInfo.t, although the parent of this hole would then

not be well-defined.

8.5.3 FAR as a generalization of evaluation

It is possible to express every evaluation operation as a n-step FAR operation, assuming that

we have the ability to look back an arbitrary number of edit states. The intuition behind

this is that the initial state of a program is the empty hole LM1. It is trivial to prove that

using the rules given by the fill diff that every edit state produces either a no diff or a fill

diff judgment against this edit state.

For practical reasons, it may be less efficient to perform a fill diff against an arbitrary

number of states, or even to store the entire history of a program. Also, the whole history

of a program may not be available. In the case of a parsed program or an example program,

which is specified as an edit state rather than a history of edit actions, we would need

additional machinery to produce a possible series of edit actions that leads to this state from

the empty state.



Chapter 9

Future work

9.1 Simplification of the postprocessing algorithms

The postprocessing algorithms presented in sections 4.3 and 5.4.1 are both memoized to avoid

repeatedly postprocessing an environment multiple times. However, the latter algorithm

(hole numbering) complicates memoization. This is due to the fact that holes need to be

re-postprocessed each time it is encountered in a new parent in order to track the closure

parents.

It would be desirable if we can avoid working around this, perhaps by reformulating the

way hole parents are tracked. A possible solution is to implementing hole parent tracking as

a separate postprocessing pass after hole closure numbering.

9.2 Improvements to FAR

9.2.1 Finishing the implementation of FAR

The implementation of FAR completed for this thesis is a limited proof-of-concept. The FAR

detection mechanism (the structural diffing algorithm) and preprocessing steps are complete.

However, due to limited time constraints, the implementation has not achieved parity with
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the theoretical exploration of FAR explored in this paper.

Firstly, a list of past edit states should be made accessible to the FAR detection algorithm.

The current structure of the Hazel toplevel and the undo history makes this trickier because

there may be multiple unrelated histories caused by switching programs (“cards”) in the top

panel of the Hazel UI.

Secondly, the evaluation result from FAR should be memoized alongside the results from

regular evaluation. The current implementation of normal evaluation is memoized and is

not aware of the FAR operation.

Thirdly, the result of evaluating the program (Result.t) is not currently stored in the

model, but the program’s edit state (Program.t) is. This means that when the program

result is needed in the Hazel UI, the program is re-evaluated. This is usually not a problem

because of memoization, but FAR results are not memoized. It would be better to store the

results of evaluation in the model and undo history to avoid this trouble.

Fourthly, is a slight issue with the current description of the FillExp variant LdMi. This

requires us to have access to the hole closure identifier i, which comes from the postprocessed

result. However, we perform the FAR operation on the un-postprocessed result. To remedy

this, we may begin evaluation from the post-processed result, which may cause us to change

some of our assumptions about the evaluation boundary. Another solution would be to have

an alternative postprocessing operation that renumbers holes but leaves alone the evaluation

boundary.

9.2.2 Memoization for environments during re-evaluation

We introduced fill expressions LdMi in section 6.2.2 in order to memoize the evaluation of

filled expressions during re-evaluation.

It will also be beneficial to memoize the re-evaluation of closure environments. To illus-

trate why this is the case, consider the case of Figure 6.15. In this example, the environment

is evaluated twice, even though it is the same physical environment. Each environment will
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be re-evaluated each time it is encountered, leading to the same exponential blowup prob-

lem encountered when dealing with postprocessing in Listing 4. The implementation of this

memoization is the same as before; we will need a new environment state variable mapping

environment identifiers to evaluated environments.

9.2.3 Choosing the edit state to fill from

There are a number of possible design decisions when searching for a valid hole fill. Firstly,

one must decide the maximum number of edit states to search: should it be a fixed number

of edit states, or should it be given a fixed time budget? Is it best to cache edit states that

recently led to a fill operation (à la LRU cache)? Is the most recent edit state that leads to

a valid fill usually the best candidate, or even a good candidate? Would it be best to allow

for user-configurable settings, or perhaps even for the user to manually select the previous

edit from which to fill?

It will be useful to collect empirical data about user-editing behaviors, as discussed in

section 9.3, in order to better tune these parameters. Alternatively, we may allow for some

user configuration of FAR, as discussed in section 9.2.4.

9.2.4 User-configurable FAR

The FAR procedure as described is a completely automatic process. However, the choice

of which past edit state to choose may be tricky, as described in section 9.2.3. It may be

desirable for the user to manually set a past edit state as an “anchor” from which to set

FAR, and thus override an automatic choice of past edit state. This reifies the concept of

sections or section breaks from computational notebooks. However, since a user-chosen edit

state may not lead to a valid fill diff, edit states that lead to an invalid fill diff will still have

to be evaluated from scratch.

It may also be desirable to disable FAR completely, whether for debugging purposes or

because it does not help performance much in the given circumstance. This should be a
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toggleable parameter in the sidebar.

Any changes to the interactiveness of the FAR operation will have a great effect on

intuitiveness, ease-of-use, editing speed, and ostensible performance. These will all play a

great effect on the usability and viscosity of editing a Hazel program.

9.2.5 UI changes for notebook-style evaluation

We have motivated the use of Hazel with FAR for notebook-style evaluation in section 8.4. It

may be useful to the programmer to have additional visual aids to help enforce the benefits

of resumed evaluation. This is currently a being developed on the lab-notebook-ui branch

of the GitHub repository.

It may be useful to format the code editor using a series of sections. These sections will

be syntactic sugar for sequences of let statements, and edits to the code in a section will

only cause the current and subsequent sections to re-evaluate. This also presents a method

to choose the edit state from which to fill that is intuitive to the user.

Another useful feature to evaluate FAR is to show evaluation statistics in the UI. The

two evaluation statistics described in section 6.6.1 may be useful information to the user.

These may inform the user what types of operations are more expensive when FAR is taken

into account, and may actually promote a style of editing that maximizes the usage of FAR.

9.3 Collection of editing statistics

The effects of switching evaluation to use environments instead of substitution, and the

effect of different methods of choosing a previous edit state for FAR may drastically change

the expected performance gain. We may only quantify expected differences in performance

when concerned with specific types of programs or editing patterns. We also do not know

the effect of manual or automatic FAR on editing viscosity.

Thus it will be useful to collect empirical statistics about user editing patterns, in order



CHAPTER 9. FUTURE WORK 105

to gain a useful insight into the general expected effect on performance of this work. This

information will likely help inform many other Hazel subprojects. Since Hazel is hosted

online and is accessible to all, collecting usage statistics is technically very easy. Other

online programming language environments, such as the Hedy incremental programming

environment for programming education [36, 37], have collected user editing statistics to

help direct their work.

9.4 Generalization of memoized methods

Memoization plays an important part of this work. Memoization of environment plays a

role in the substitution postprocessing (section 4.3), hole numbering postprocessing (sec-

tion 5.4.1), structural equality checking (section 5.5), evaluation of filled expressions (sec-

tion 6.2.3), and re-evaluation of environments (section 9.2.2). Despite this, each time memo-

ization is used, the implementation and formalization are ad hoc. This is due to the scattered

discovery of performance problems and realization that memoization would be useful.

A future implementation of memoized algorithms will be well-served by a generalized

characterization of memoization by environments. This should include a generalized nota-

tion, so that new memoized algorithms can be easily introduced. This should also include

a precise characterization of what algorithms may be memoized; for example, the difficulty

presented in section 9.1 is due to the difficulty of memoizing the hole parent tracking process

as part of the hole numbering process.

9.5 Mechanization of metatheorems and rules

The metatheory of Hazelnut and Hazelnut Live were proved using the Agda proof assistant

[9, 10]. A similar proof of the metatheory presented in this work is left to future work. Due

to time constraints, we are satisfied with using the intuition presented as justifications for

the metatheorems in this thesis.
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Conclusions and recommendations

This thesis explores several practical advancements to the dynamic semantics of Hazel, an

implementation of a live programming editor with typed holes. We develop rules and a

metatheory for the propesd changes as well as a working implementation for most of the

rules provided.

The first proposed change is the switch from using variable substitution at binding time

to looking up variables in an environment at runtime. This implementation leads to the

introduction of closures to the internal language of Hazel, as well as a postprocessing step to

restore the same result that would have been achieved by evaluation using the substitution

model. Initially, we begin with the conventional function closures and the hole closures

introduced in Hazelnut. Later, we introduce generalized closures, which subsume function

and hole closures, and represent any paused evaluation. Generalized closures play a critical

role in the fill-and-resume (FAR) optimization.

The second major change is the use of the environment model to memoize operations

that occur on shared environments. Environments are uniquely numbered to allow for lookup

and memoization. Memoization is applied to the hole renumbering process (in the process

changing the useful interpretation from hole instances to hole closures), and to speed up the

structural equality checking. Memoization may also be helpful with the re-evaluation with
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filled expressions and environments during the FAR re-evaluation process, but this has not

been fully implemented yet.

The third major contribution is a set of practical considerations to implementing FAR,

as originally proposed in Hazelnut Live. FAR promotes resuming evaluation from a previous

evaluation result when an edit action is performed, as opposed to restarting evaluation from

the beginning on every edit action. Firstly, we describe a structural diffing algorithm for

detection of a valid fill operation. This algorithm is intuitive and robust to work between an

arbitrary past edit state and the current edit state (a n-step fill operation). We also provide

the basic semantics for the fill (preprocessing) and resume (re-evaluation) operations. A

1-step FAR operation is implemented as a proof of concept.

We evaluate the performance of these methods empirically, via a series of benchmarks of

sample programs. We compare the difference between the current main development branch

on the dev branch to an updated evaluation model implementing the changes proposed

in this thesis, in the eval-environment and fill-and-resume-backend branches. The

results qualitatively match the expectation. Evaluation with environments is beneficial for

performance when lazy variable lookups are reduced and the environment size is small.

Substitution may be beneficial for performance when the number of substitution passes is

small. The memoization of environments solves the performance issue in the program that

motivated the memoization of environments in the hole numbering and structural equality

checking processes. FAR provides a great improvement in efficiency when there is a valid fill

operation and expensive re-computations can be avoided. However, FAR may sometimes be

more expensive than regular evaluation from the beginning, due to the recursive re-evaluation

of environments. Future work on this environment memoization and the implementation of

the n-step fill operation should further improve the performance benefit of FAR.

We do not prove the correctness of the implementation. We instead provide a metathe-

ory governing the implementation and provide a logical intuition for the correctness of the

proposed metatheorems. We leave formal proofs of the metatheory and proofs of the com-



CHAPTER 10. CONCLUSIONS AND RECOMMENDATIONS 108

pletenes of the metatheorems to future work.

The primary goal of this work is to inform future development on Hazel or related re-

search efforts, and the explanations and motivations have been written in enough detail to

allow for others to independently reproduce this work. The implementation of the rules in

this work are intended to act as a reference implementation and not necessarily be incor-

porated directly into the main development branches; the theoretical discussion is the more

useful part of this work. We discuss practical tradeoffs of implementing evaluation with

environments. Evaluation using environments leads to some improvement in performance in

many programs where lazy variable lookup is beneficial, and leads to a major improvement

in performance in some programs due to the effect of memoizing environments, but comes

at the expense of a great deal of extra complexity that may obscure Hazel’s original goal in

approaching the gap problem. We also describe a possible implementation of FAR and en-

trypoint for the FAR algorithm, with possibilities for further memoizing re-evaluation. The

empirical results that are presented may serves as a guideline for performance benefits, but it

will be useful to collect user editing and program statistics to better evaluate the average or

expected performance benefit of the proposed changes. Along the way, we introduce several

novel generalizations that both simplify implementation and give nice theoretical interpre-

tations, such as generalized closures and the presentation of n-step FAR as a generalization

of evaluation.
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Appendix A

Primer to the λ-calculus

This appendix acts as a self-contained primer on the λ-calculus, which serves as the theoreti-

cal foundation for the Hazel programming language and many other functional programming

languages. Much of this material comes from a standard introductory text in programming

languages, such as [18]. While this thesis focuses on the dynamic semantics, we do not at-

tempt to separate it from the grammar and static semantics of the λ-calculus, for they are

intimately connected.

A.1 The untyped λ-calculus

Church introduced the untyped λ-calculus Λ as an example of a simple universal language of

computable functions, and it forms the foundation for the syntax and evaluation semantics

of functional programming languages.

The grammar of Λ is very simple, only comprising three forms (excluding parentheses1),

shown in Figure A.1.

1The imperative programmer with a background in a C-family language be warned: parentheses are not
required for function application. Rather, space ( ) is an infix operator that represents function application
in Λ and many functional languages. It traditionally is left-associative and has the highest precedence
of any infix operator. Parentheses around function arguments are only required when it affects the order
of operations. An exception to this rule in functional programming is in the LISP family of languages,
in which parentheses specify function application rather than operator precedence, and space separates
operators and operands, but that is not the interpretation here.
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e ::= x (variable)

| λx.e (λ-abstraction)

| e e (function application)

Figure A.1: Grammar of Λ

λx.e ⇓ λx.e
Λ-ELam

e1 ⇓ λx.e′1 [e2/x]e
′
1 ⇓ e

e1 e2 ⇓ e
Λ-EAp

Figure A.2: Dynamic semantics for Λ

The static semantics of this syntax are very simple: every expression in Λ is well-formed

iff all variables are bound2.

The dynamic semantics are similarly simple, shown in Figure A.2 using a big-step seman-

tics. λ-abstractions are values (expressions that evaluate to themselves), and application is

applied by substituting variables3.

Λ is an example of a Turing-complete language. One of the key characteristics to such a

language is the ability to implement recursive algorithms. To implement recursion, a function

must be able to refer to itself. Since there is no construct to bind an expression to a variable

other than λ-abstractions (i.e., there is no construct such as OCaml’s let rec expressions

or other standalone variable declarations), one must pass a self-reference of a function to

itself. For example, let us consider the example of a factorial function in Λ4.

fact’ ≡ λf.λx.if x = 0 then 1 else x ∗ f(x− 1)

2There are no typing rules in the static semantics, because there is only a single type: the recursive arrow
type τ ::= τ → τ . Thus, it may be more correct to say that Λ is “uni-typed” as opposed to “untyped,” as
noted in [18]. Thus no type errors will occur when evaluating a (well-formed) expression in Λ.

3The substitution of the function variable during function application is known as β-reduction. Renaming
of bound variables (a process known as α-conversion) is used to avoid substituting variables of the same
name bound by a different binder.

4For sake of illustration, the language is extended with a conditional statement, integers, and simple integer
operators.
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τ ::= τ → τ (function type)

| b (base type)

e ::= c (constant)

| x (variable)

| λx : τ.e (type-annotated function)

| e e (function application)

| fix f : τ.e (fixpoint)

Figure A.3: Syntax of Λ→

To facilitate the recursion, we need the help of an auxiliary operator which converts

a recursive function formulated with a self-reference parameter as shown above. The Y-

combinator is such an operator. The operation of this operator is made clear by working

through the β-reduction of the fact function.

Y ≡ λf.(λx.f(x x)) (λx.f(x x))

fact ≡ Y fact’

A more thorough discussion of Λ and the Y-combinator is left to standard material on

programming language theory, such as [18].

A.2 The simply-typed λ-calculus

While the λ-calculus is Turing complete and sufficient to represent any computation, it is

not practical in terms of efficiency or usability if all data is represented with functions5.

The simply-typed λ-calculus (STLC) Λ→ extends Λ with one or more base types bi, such

as integers, booleans, or floating-point numbers. Consider the case of a single base type b.

The extended grammar is shown in Figure A.3.

5All data may be represented in terms of functions with a notation called the Church encoding. For example,
there are standard Church encodings for natural numbers, for boolean values and conditionals, and for pairs
(cons), which can be used to construct structured data.
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Γ ⊢ c : b
Λ→-TConst

Γ, x : τ ⊢ x : τ
Λ→-TVar

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ (λx : τ1.e) : τ2
Λ→-TLam

Γ ⊢ e1 : τ1 → τ Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ
Λ→-TAp

Γ ⊢ (fix f : τ.e) : τ
Λ→-TFix

Figure A.4: Static semantics of Λ→

c ⇓ c
Λ→-EConst

λx : τ.e ⇓ λx : τ.e
Λ→-ELam

e1 ⇓ λx : τ.e′1 [e2/x]e
′
1 ⇓ e

e1 e2 ⇓ e
Λ→-EAp

[fix f : τ.e/f ]e ⇓ e′

fix f : τ.e ⇓ e′
Λ→-EFix

Figure A.5: Dynamic semantics of Λ→

The grammar is extended to include constants of the base type. The type of functions

parameters must be annotated6.

We now define what it means for a program in Λ→ to be well-typed. The typing judgments

shown in Figure A.4 assign a type to a Λ→ program.

The dynamic semantics are not much different than Λ. Additional evaluation rules are

defined for constants and fixpoints; evaluation of λ-abstractions and function application

remains the same. The dynamic semantics are shown in Figure A.5.

We may characterize type systems by establishing certain desirable properties. One such

property is soundness. Soundness means that if a program in Λ→ type-checks, then it will

not fail with a type error at run-time. This property is not necessary to prove for Λ because

there is only one type in Λ, the recursive type τ ::= τ → τ .

There is an additional expression form in Λ→. This is the fixpoint form, fix f : τ.e.

The fixpoint is a primitive operator with the same purpose and evaluation behavior as the

6This is in the simplest case of type-assignment. With a type inference system such as bidirectional typing
as described in Section 2.1.3, some type annotations may be optional.
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Y-combinator: it allows for self-reference, and thus general recursion. The reason for the

explicit fixpoint operator is that the Y-combinator is ill-typed. Self-reference is inherently

poorly-typed and requires a primitive operator, since it involves a function which takes itself

as a parameter (leading to an infinitely-recursive arrow type). With the fix operator, we

may express the factorial function as shown below7.

fact ≡ fix f : int→ int.λx : int.if x = 0 then 1 else x ∗ f(x− 1)

The fixpoint operator is introduced in Plotkin’s System PCF [18], and is used to imple-

ment recursion in Hazel’s evaluator, which uses a substitution-based evaluation.

Λ→ is a practical foundation for many functional languages. Standard exercises include

extending Λ→ with multiple base types (such as integers and booleans), conditional expres-

sions, let-expressions, and case-expressions. The basic type system can be extended to use

type inference algorithms or support more advanced types.

A.3 The gradually-typed λ-calculus

We have discussed Λ→, which involves a simple static typing system, as type checks are part

of the static semantics. However, we may extend Λ with an additional base type but without

a static semantics. In this case, a well-formed expression may fail at run-time due to type

errors – thus, types are checked in the dynamic semantics and this is known as dynamic

typing. The benefit of static typing is soundness and performance (as run-time type checks

are relatively slow). The benefit of dynamic checking is to avoid annotating types8, and thus

more quickly prototype or refactor programs.

A hybrid approach is the gradually-typed λ-calculus Λ?
→, originally proposed by Siek

7In this example, we assume that the base type b ≡ int, and that conditionals and primitive integer operations
extend Λ→.

8Note that type inference systems in a statically-typed system also allow for reduced type-annotations, but
may still require some annotations when not enough information is given for type inference.
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Γ ⊢ e1 : τ1 τ1 ▶→ τ2 → τ3 Γ ⊢ e2 : τ3

Γ ⊢ e1 e2 : τ3
Λ?
→-TAp

Γ ⊢ e : τ τ ∼ τ ′

Γ ⊢ e : τ ′
Λ?
→-TSub

Figure A.6: Updated static semantics of Λ?
→

and Taha [20, 21]9. In Λ?
→, all type annotations are optional and offer a “pay-as-you-go”

benefit. A completely unannotated Λ?
→ program acts like dynamic typing (Λ extended with

base type(s) but no static semantics), with run-time casts and the possibility of run-time

type failures. A completely annotated Λ?
→ program is equivalent to a Λ→ program. The

performance cost of run-time casts and the possibility of run-time type failures only occurs

when evaluating expressions with unannotated terms.

The grammar of Λ?
→ is almost exactly the same as Λ→, except that we add a new type

∗, indicating an unspecified type. Now, λ-abstractions annotated with this type may be

considered to be unannotated. We define the notation λx.e ≡ λx : ∗.e.

The static semantics of Λ?
→, shown in Figure A.6, is expectedly also similar to Λ→. The

only rule that differs is the rule for function application. We also write a new rule for

subsumption, which states that if Γ ⊢ e : τ , then e may also be assigned any consistent type.

Two new judgments are introduced here. The first is the matched arrow judgment τ−1 ▶→

(τ2 → τ3)
+, which is a notational convenience which allows us to write a single rule for arrow

types, which may either be a hole or an arrow type. This judgment is defined by the rules

in Figure A.7.

The second new judgment is the type consistency judgment τ−1 ∼ τ−2 . This judgment

defines the typing relation of the unknown type to other types: every type is consistent

to the hole type. Thus any type will type-check where a hole is expected, and vice versa.

This relation is reflexive, symmetric, and non-transitive10. The rules for type consistency

9The material presented in this section originates from Siek et al. [20, 21], but the notation conventions
follow from Hazelnut Live [2] in order to stay consistent with the rest of this paper. The symbol for the
hole type ∗ originates from [21]. The cast calculus notation is an improved notation introduced in [21] and
also used in [2].

10It may seem unintuitive at first that type consistency is a symmetric relationship, because it may seem
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τ ▶→ τ1 → τ2 τ has matched arrow type τ1 → τ2

∗ ▶→ ∗ → ∗
MAHole

τ1 → τ2 ▶→ τ1 → τ2
MAArr

Figure A.7: Matched arrow judgment

τ1 ∼ τ2 τ1 is consistent with τ2

∗ ∼ τ
TCHoleTyp

τ ∼ ∗ TCTypHole
τ1 ∼ τ ′1 τ2 ∼ τ ′2

(τ1 → τ2) ∼ (τ ′1 → τ2)
TCArr

Figure A.8: Type consistency judgment

are shown in Figure A.8.

Evaluation of a gradually-typed language introduces a cast calculus, which performs

run-time type checking. To do this, we design another language, Λ⟨τ⟩
→ , whose grammar is

identical to Λ?
→ except for the introduction of a new expression form indicating a run-time

cast, d⟨τ ⇒ τ ′⟩. We also define the notation d⟨τ ⇒ τ ′ ⇒ τ ′′⟩ ≡ d⟨τ ⇒ τ ′⟩⟨τ ′ ⇒ τ ′′⟩. We refer

to Λ?
→ as the external language and Λ⟨τ⟩

→ as the internal language. We denote expressions

in Λ?
→ with the letter e and expressions in Λ⟨τ⟩

→ with the letter d. We only define static

semantics on Λ?
→ and only define dynamic semantics on Λ⟨τ⟩

→ . The process of converting from

the external language to the internal language (i.e., the process of cast-insertion) is called

elaboration.

Usually, elaboration includes the type-checking operation rather than being a separate

operation. Elaboration fails if type checking fails. A preservation theorem may be stated

that the type assigned by elaboration is the same as the type assigned by the type assignment

judgment.

The elaboration process is governed by the judgment Γ− ⊢ e− ; d+ : τ+. For most

more like a subtyping relation. However, a major revolution in Siek and Taha’s original formulation of
Λ?
→ is that the symmetric subtyping relation is more suitable than the subtyping relations that had been

explored in earlier works such as Thatte’s quasi-static typing [20].
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Γ ⊢ e ; d : τ e elaborates to d of type τ given typing context Γ

Γ ⊢ c ; c : b
Λ?
→-ElConst

Γ, x : τ1 ⊢ e : τ2

Γ ⊢ λx : τ1.e ; (λx : τ1.e) : τ1 → τ2
Λ?
→-ElLam

Γ ⊢ fix f : τ.e ; (fix f : τ.e) : τ
Λ?
→-ElFix

Γ ⊢ e1 ; d1 : τ1 τ1 ▶→ τ3 → τ4 Γ ⊢ e2 ; d2 : τ2 τ2 ∼ τ3

Γ ⊢ e1 e2 ; (d1⟨τ1 ⇒ τ3 → τ4⟩) (d2⟨τ2 ⇒ τ5⟩) : τ4
Λ?
→-ElApp

Figure A.9: Elaboration in Λ?
→

expression types, the expression in the external language elaborates to itself. The only

exception is function applications, in which dynamic casts are inserted. The elaboration

process is described in Figure A.9.

We may now define a dynamic semantics on Λ⟨τ⟩
→ . The following dynamic semantics

is simplified from Siek et. al’s formulation for the sake of clarity11 and is not intended

to be a precise description of the evaluation semantics. As before, the dynamic semantics

are described using a big-step notation, where the judgment d− final indicates that d is a

value12. There is also the possibility of a dynamic cast error, given by rule Λ⟨τ⟩
→ -ECastFail.

The dynamic semantics is shown in Figure A.10.

Hazel’s core calculus heavily borrows from Λ?
→ and Λ⟨τ⟩

→ . The rules for casts will re-

main unchanged for the dynamic semantics when switching to use the environment mode of

evaluation.

11Siek [21] introduces the idea of ground types and the matched-ground judgment. Casts can only succeed
or fail between ground types. Additionally, Siek et al. describes blames and frames to encapsulate errors.
Ground types are carried over to Hazelnut Live’s formulation [2], but blames and frames are not currently
implemented in Hazel.

12The small-step semantics is perhaps be more clear here, as it more clearly illustrates the isolated effect of
the cast operation. Both Siek et al. [20, 21] and Hazelnut Live [2] describe the dynamic semantics using a
small-step semantics. Hazelnut Live adds the concept of the final judgment to delineate values. However,
we use a big-step semantics to remain consistent with the rest of the notation in this work.
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c final
Λ
⟨τ⟩
→ -VConst

λx : τ.d final
Λ
⟨τ⟩
→ -VLam

e⟨τ ⇒ ∗⟩ final Λ
⟨τ⟩
→ -VBoxedVal

d final

d ⇓ d
Λ
⟨τ⟩
→ -EVal

[fix f : τ.d/f ]d ⇓ d′

fix f : τ.d ⇓ d′
Λ
⟨τ⟩
→ -EFix

d1 ⇓ λx : τ.d′1 [d2/x]d1 ⇓ d

d1 d2 ⇓ d
Λ
⟨τ⟩
→ -EAp

d1 ⇓ d′1⟨τ1 → τ2 ⇒ τ ′1 → τ ′2⟩ (d′1 (d2⟨τ ′1 ⇒ τ1⟩))⟨τ2 ⇒ τ ′2⟩ ⇓ d

d1 d2 ⇓ d
Λ
⟨τ⟩
→ -ECastAp

d ⇓ d′

d⟨τ ⇒ τ⟩ ⇓ d′
Λ
⟨τ⟩
→ -ECastId

d ⇓ d′

d⟨τ ⇒ ∗ ⇒ τ⟩ ⇓ d′
Λ
⟨τ⟩
→ -ECastSucceed

d⟨τ ⇒ ∗ ⇒ τ ′⟩ castfail Λ
⟨τ⟩
→ -ECastFail

Figure A.10: Dynamic semantics of Λ⟨τ⟩
→
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Reproduced rules from Hazelnut Live

B.1 Hazelnut Live dynamic semantics

This section serves as supplemental material for Section 3.3.4.

B.1.1 Final judgment

The d final judgment, which describes the set of irreducible expressions in Hazelnut Live

internal language, is reproduced in Figure B.1.

B.1.2 Substitution-based evaluation judgment

The evaluation judgment from Hazelnut Live is reproduced in big-step notation in Figure B.2.

B.2 Hazelnut Live substitution-based FAR

This section serves as supplemental material for Section 6.7. The Hazelnut Live formulation

of FAR is reproduced in Figure B.3.

122
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d final d is final

d boxedval

d final
FBoxedVal

d boxedval

d final
FIndet

d val d is a value

c val
VConst

λx : τ.d val
VLam

d boxedval d is a boxed value

d val

d boxedval
BVVal

τ1 → τ2 ̸= τ3 → τ4 d boxedval

d⟨τ1 → τ2 ⇒ τ3 → τ4⟩ boxedval
BVArrCast

d boxedval τ ground

d⟨τ ⇒ LM⟩ boxedval BVHoleCast

d indet d is indeterminate

LMuσ indet
IEHole

d final

LdMuσ indet
INEHole

d1 ̸= d′1⟨τ1 → τ2 ⇒ τ3 → τ4⟩ d1 indet d2 final

d1 d2 indet
IAp

d indet τ ground

d⟨τ ⇒ LM⟩ indet ICastGroundHole

d ̸= d′⟨τ ′ ⇒ LM⟩ d indet τ ground

d⟨LM⇒ τ⟩ indet ICastHoleGround

τ1 → τ2 ̸= τ3 → τ4 d indet

d⟨τ1 → τ2 ⇒ τ3 → τ4⟩ indet
ICastArr

d final τ1 ground τ2 ground τ1 ̸= τ2

d⟨τ1 ⇒ LM ̸⇒ τ2⟩ indet
IFailedCast

Figure B.1: Hazelnut Live final judgment
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d ⇓ d′ d evaluates to d′

d final

d ⇓ d
EFinal

d1 ⇓ λx : τ.d′1 d2 ⇓ d′2 [d′2/x]d
′
1 ⇓ d

d1 d2 ⇓ d
EAp

d1 ⇓ d′1⟨τ1 → τ2 ⇒ τ ′1 → τ ′2⟩
τ1 → τ2 ̸= τ ′1 → τ ′2 d2 ⇓ d′2 d′1(d

′
2⟨τ ′1 ⇒ τ1⟩))⟨τ2 ⇒ τ ′2⟩ ⇓ d

d1 d2 ⇓ d
EApCast

d ⇓ d′

d⟨τ ⇒ τ⟩ ⇓ d′
ECastId

d ⇓ d′

d⟨τ ⇒ LM⇒ τ⟩ ⇓ d′
ECastSucceed

τ1 ̸= τ2 τ1 ground τ2 ground d ⇓ d′

d⟨τ1 ⇒ LM⇒ τ2⟩ ⇓ d⟨τ1 ⇒ LM ̸⇒ τ2⟩
ECastFail

τ ▶→ τ ′ d ⇓ d′

d⟨τ ⇒ LM⟩ ⇓ d′⟨τ ⇒ τ ′ ⇒ LM⟩ EGround
τ ▶→ τ ′ d ⇓ d′

d⟨LM⇒ τ⟩ ⇓ d′⟨LM⇒ τ ′ ⇒ τ⟩ EExpand

d ⇓ d′

LdMuσ ⇓ Ld′Muσ
ENEHole

Figure B.2: Hazelnut Live evaluation rules
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Ju/dKd′ = d′′ d′′′ is obtained by filling hole u with d in d′

Ju/dKc = c
FillSubConst

Ju/dKx = x
FillSubVar

Ju/dKλx : τ.d′ = λx : τ.Ju/dKd′
FillSubLam

Ju/dKd1 d2 = (Ju/dKd1) (Ju/dKd2)
FillSubAp

Ju/dKLMuσ = [Ju/dKσ]d
FillSubEHole1

u ̸= u′

Ju/dKLMu
′

σ = LMu
′

σ

FillSubEHole2
Ju/dKLd′Muσ = [Ju/dKσ]d

FillSubNEHole1

u ̸= u′

Ju/dKLd′Mu
′

σ = LJu/dKd′Mu
′

Ju/dKσ

FillSubNEHole2

Ju/dKd′⟨τ ⇒ τ ′⟩ = (Ju/dKd′)⟨τ ⇒ τ ′⟩ FillSubCast

Ju/dKd′⟨τ ⇒ LM ̸⇒ τ ′⟩ = (Ju/dKd′)⟨τ ⇒ LM ̸⇒ τ ′⟩ FillSubFailedCast

Ju/dKσ = σ′ σ′ is obtained by filling hole u with d in σ

Ju/dK∅ = ∅
FillSubEnvNull

σ′ = Ju/dKσ d′′ = Ju/dKd′

Ju/dKσ, x← d′ = σ′, x← d′′
FillSubEnv

Figure B.3: Hazelnut Live substitution-based FAR



Appendix C

Selected code samples

C.1 Correspondence between theory and code

Table C.1 relates symbols to the corresponding ReasonML module(s) in the implementation.

Table C.2 relates algorithms or judgments to the corresponding ReasonML module(s) in the

implementation. If the source code for a listed module is present in this Appendix, then the

section will be listed as well.

C.2 Relevant code snippets

Relevant code snippets are shown below. Omitted sections are indicated with /* (...) */ .

The source language is ReasonML. Each file represents a module. Files with the .rei file

Symbol Name Module(s)

e External expression UHExp

τ Type HTyp

Γ Typing context Contexts

d Internal expression DHExp (Appendix C.2.1)
σ (Numbered) environment EvalEnv, EvalEnvId, VarBstMap (Appendix C.2.2)
H Hole closure tracking HoleClosureInfo , HoleClosureInfo (Appendix C.2.5)

d1 ▷
u
d d2 Fill diff judgment DiffDHExp (Appendix C.2.6)

Table C.1: Correspondence between symbols and code

126
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Algorithm Name Module(s)

σ ⊢ d ⇓ d′ Evaluation Evaluator (Appendix C.2.3)
d ⇑ d′ Postprocessing EvalPostprocess (Appendix C.2.4)
d1 ▷

u
d d2 Structural diff DiffDHExp (Appendix C.2.6)

Ju/dKd′ FAR FillAndResume (Appendix C.2.6)

Table C.2: Correspondence between algorithms and code

extension are interface files and only contain definitions (the module’s public interface) and

documentation in the form of comments. Files with the .re file extension contain the mod-

ule’s implementation. These code snippets are taken from the fill-and-resume-backend

branch.

C.2.1 Internal language

/* DHExp.rei */

[@deriving sexp]

type t =

/* Hole types */

| EmptyHole(MetaVar.t, HoleClosureId.t)

| NonEmptyHole(ErrStatus.HoleReason.t, MetaVar.t, HoleClosureId.t, t)

// TODO rename to ExpandingKeyword

| Keyword(MetaVar.t, HoleClosureId.t, ExpandingKeyword.t)

| FreeVar(MetaVar.t, HoleClosureId.t, Var.t)

| InvalidText(MetaVar.t, HoleClosureId.t, string)

| InconsistentBranches(MetaVar.t, HoleClosureId.t, case)

/* Generalized closures */

| Closure(evalenv, bool, t)

/* Other expressions forms */

| BoundVar(Var.t)

| Let(DHPat.t, t, t)

| FixF(Var.t, HTyp.t, t)

| Fun(DHPat.t, HTyp.t, t)

| Ap(t, t)

| ApBuiltin(string, list(t))

| BoolLit(bool)

| IntLit(int)

| FloatLit(float)

| BinBoolOp(BinBoolOp.t, t, t)

| BinIntOp(BinIntOp.t, t, t)

| BinFloatOp(BinFloatOp.t, t, t)

| ListNil(HTyp.t)

| Cons(t, t)

| Inj(HTyp.t, InjSide.t, t)

| Pair(t, t)
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| Triv

| ConsistentCase(case)

| Cast(t, HTyp.t, HTyp.t)

| FailedCast(t, HTyp.t, HTyp.t)

| InvalidOperation(t, InvalidOperationError.t)

and case =

| Case(t, list(rule), int)

and rule =

| Rule(DHPat.t, t)

and environment = VarMap.t_(t)

and evalenv = (EvalEnvId.t, VarBstMap.t(result))

and result =

| BoxedValue(t)

| Indet(t);

/* (...) */

/* Used for faster structural equality checking. Structural

checking may be slow when an expression is large,

in particular when environments are repeated many times.

We can optimize checking for structural equality of

environments simply by checking equality of environment ID's.

Note: assumes that environments with the same EvalEnvId.t

within both expressions are equivalent. This assumption

is true if comparing within a program evaluation (since

EvalEnvId.t numbers don't get reused within a single program

evaluation) or if all the environments are checked to be

equal (see Result.fast_equals).

*/

let fast_equals: (t, t) => bool;

Listing 9: DHExp.rei

/* DHExp.re */

/* (...) */

let rec fast_equals = (d1: t, d2: t): bool => {

switch (d1, d2) {

/* Primitive forms: regular structural equality */

| (BoundVar(_), _)

| (BoolLit(_), _)

| (IntLit(_), _)

| (FloatLit(_), _)

| (ListNil(_), _)

| (Triv, _) => d1 == d2

/* Non-hole forms: recurse */

| (Let(dp1, d11, d21), Let(dp2, d12, d22)) =>

dp1 == dp2 && fast_equals(d11, d12) && fast_equals(d21, d22)
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| (FixF(f1, ty1, d1), FixF(f2, ty2, d2)) =>

f1 == f2 && ty1 == ty2 && fast_equals(d1, d2)

| (Fun(dp1, ty1, d1), Fun(dp2, ty2, d2)) =>

dp1 == dp2 && ty1 == ty2 && fast_equals(d1, d2)

| (Ap(d11, d21), Ap(d12, d22))

| (Cons(d11, d21), Cons(d12, d22))

| (Pair(d11, d21), Pair(d12, d22)) =>

fast_equals(d11, d12) && fast_equals(d21, d22)

| (ApBuiltin(f1, args1), ApBuiltin(f2, args2)) =>

f1 == f2 && List.for_all2(fast_equals, args1, args2)

| (BinBoolOp(op1, d11, d21), BinBoolOp(op2, d12, d22)) =>

op1 == op2 && fast_equals(d11, d12) && fast_equals(d21, d22)

| (BinIntOp(op1, d11, d21), BinIntOp(op2, d12, d22)) =>

op1 == op2 && fast_equals(d11, d12) && fast_equals(d21, d22)

| (BinFloatOp(op1, d11, d21), BinFloatOp(op2, d12, d22)) =>

op1 == op2 && fast_equals(d11, d12) && fast_equals(d21, d22)

| (Inj(ty1, side1, d1), Inj(ty2, side2, d2)) =>

ty1 == ty2 && side1 == side2 && fast_equals(d1, d2)

| (Cast(d1, ty11, ty21), Cast(d2, ty12, ty22))

| (FailedCast(d1, ty11, ty21), FailedCast(d2, ty12, ty22)) =>

fast_equals(d1, d2) && ty11 == ty12 && ty21 == ty22

| (InvalidOperation(d1, reason1), InvalidOperation(d2, reason2)) =>

fast_equals(d1, d2) && reason1 == reason2

| (ConsistentCase(case1), ConsistentCase(case2)) =>

fast_equals_case(case1, case2)

/* We can group these all into a `_ => false` clause; separating

these so that we get exhaustiveness checking. */

| (Let(_), _)

| (FixF(_), _)

| (Fun(_), _)

| (Ap(_), _)

| (ApBuiltin(_), _)

| (Cons(_), _)

| (Pair(_), _)

| (BinBoolOp(_), _)

| (BinIntOp(_), _)

| (BinFloatOp(_), _)

| (Inj(_), _)

| (Cast(_), _)

| (FailedCast(_), _)

| (InvalidOperation(_), _)

| (ConsistentCase(_), _) => false

/* Hole forms: when checking environments, only check that

environment ID's are equal, don't check structural equality.

(This resolves a performance issue with many nested holes.) */

| (EmptyHole(u1, i1), EmptyHole(u2, i2)) => u1 == u2 && i1 == i2

| (NonEmptyHole(reason1, u1, i1, d1), NonEmptyHole(reason2, u2, i2, d2)) =>

reason1 == reason2 && u1 == u2 && i1 == i2 && fast_equals(d1, d2)

| (Keyword(u1, i1, kw1), Keyword(u2, i2, kw2)) =>

u1 == u2 && i1 == i2 && kw1 == kw2

| (FreeVar(u1, i1, x1), FreeVar(u2, i2, x2)) =>

u1 == u2 && i1 == i2 && x1 == x2



APPENDIX C. SELECTED CODE SAMPLES 130

| (InvalidText(u1, i1, text1), InvalidText(u2, i2, text2)) =>

u1 == u2 && i1 == i2 && text1 == text2

| (Closure((ei1, _), _, d1), Closure((ei2, _), _, d2)) =>

/* Cannot use EvalEnv.equals here because it will create a dependency loop. */

ei1 == ei2 && fast_equals(d1, d2)

| (

InconsistentBranches(u1, i1, case1),

InconsistentBranches(u2, i2, case2),

) =>

u1 == u2 && i1 == i2 && fast_equals_case(case1, case2)

| (EmptyHole(_), _)

| (NonEmptyHole(_), _)

| (Keyword(_), _)

| (FreeVar(_), _)

| (InvalidText(_), _)

| (Closure(_), _)

| (InconsistentBranches(_), _) => false

};

}

and fast_equals_case = (Case(d1, rules1, i1), Case(d2, rules2, i2)) => {

fast_equals(d1, d2)

&& List.length(rules1) == List.length(rules2)

&& List.for_all2(

(Rule(dp1, d1), Rule(dp2, d2)) => dp1 == dp2 && fast_equals(d1, d2),

rules1,

rules2,

)

&& i1 == i2;

};

Listing 10: DHExp.re

C.2.2 Numbered environments

/* VarBstMap.re */

open Sexplib.Std;

module Sexp = Sexplib.Sexp;

include Map.Make(Var);

/* See IntMap */

[@deriving sexp]

type binding('v) = (Var.t, 'v);

let sexp_of_t = (sexp_of_v: 'v => Sexp.t, map: t('v)): Sexp.t =>

map |> bindings |> sexp_of_list(sexp_of_binding(sexp_of_v));

let t_of_sexp = (v_of_sexp: Sexp.t => 'v, sexp: Sexp.t): t('v) =>

sexp |> list_of_sexp(binding_of_sexp(v_of_sexp)) |> List.to_seq |> of_seq;
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Listing 11: VarBstMap.re

/* EvalEnv.rei */

/* EvalEnv is an environment (mapping variables to expressions) that

are used during evaluation. It is different from Environment.t in two ways:

1. It maps Var.t to Evaluator.result (rather than to DHExp.t)

2. Each EvalEnv has an ID associated with it (if evaluation reaches it),

or is unreachable. (i.e., a placeholder environment)

Environment.t may be useful in certain cases, namely pattern matching,

when an evaluated result is not needed. EvalEnv is used for environents

during evaluation, including in closures. EvalEnvs are numbered

so that operations on them (e.g., during hole numbering) can be memoized;

the id allows for quick equality checking and allows environments to be

comparable (e.g., so that they can be stored in a map).

Both EvalEnv.t and Environment.t are often named sigma (usually for hole

environments) or env.

This mimicks the VarMap interface on the extended EvalEnv.t type. Most

operations require an EvalState.t parameter, which is used to generate

unique ID's for each environment, and is created using EvalEnv.empty

(at the beginning of evaluation).

*/

[@deriving sexp]

type t = DHExp.evalenv

and result_map = VarBstMap.t(EvaluatorResult.t);

/* Special environment to begin evaluation at the top level

(empty environment). */

let empty: t;

let id_of_evalenv: t => EvalEnvId.t;

let result_map_of_evalenv: t => result_map;

let environment_of_evalenv: t => Environment.t;

let alist_of_evalenv: t => list((Var.t, EvaluatorResult.t));

let is_empty: t => bool;

let length: t => int;

let to_list: t => list((Var.t, EvaluatorResult.t));

let lookup: (t, Var.t) => option(EvaluatorResult.t);

let contains: (t, Var.t) => bool;

/* Equals only needs to check environment ID's.

(faster than structural equality checking.) */

let equals: (t, t) => bool;
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/* these functions require an `EvalState.t` because they generate a new

`EvalEnvId.t` */

let extend: (EvalState.t, t, (Var.t, EvaluatorResult.t)) => (EvalState.t, t);

let map:

(EvalState.t, (Var.t, EvaluatorResult.t) => EvaluatorResult.t, t) =>

(EvalState.t, t);

let filter:

(EvalState.t, (Var.t, EvaluatorResult.t) => bool, t) => (EvalState.t, t);

/* union(new_env, env) extends env with new_env (same argument order

as in VarMap.union) */

let union: (EvalState.t, t, t) => (EvalState.t, t);

/* same as map, but doesn't assign a new ID. (This is used when

transforming an environment, such as in the closure->lambda stage

after evaluation. More functions may be added like this as-needed

for similar purposes.) */

let map_keep_id: ((Var.t, EvaluatorResult.t) => EvaluatorResult.t, t) => t;

Listing 12: EvalEnv.rei

/* EvalEnv.re */

[@deriving sexp]

type t = DHExp.evalenv;

[@deriving sexp]

type result_map = VarBstMap.t(EvaluatorResult.t);

/* Environment with a special `EvalEnvId.t` of zero. */

let empty: t = (EvalEnvId.empty, VarBstMap.empty);

let id_of_evalenv = ((ei, _): t): EvalEnvId.t => ei;

let environment_of_evalenv = ((_, result_map): t): Environment.t =>

result_map

|> VarBstMap.bindings

|> List.map(((x, res: EvaluatorResult.t)) =>

switch (res) {

| Indet(d)

| BoxedValue(d) => (x, d)

}

);

let result_map_of_evalenv = ((_, result_map): t): result_map => result_map;

let alist_of_evalenv =

((_, result_map): t): list((Var.t, EvaluatorResult.t)) =>

result_map |> VarBstMap.bindings;

let is_empty = (env: t) => VarBstMap.is_empty(result_map_of_evalenv(env));
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let equals = (env1: t, env2: t): bool =>

id_of_evalenv(env1) == id_of_evalenv(env2);

let extend =

(es: EvalState.t, env: t, (x, a): (Var.t, EvaluatorResult.t))

: (EvalState.t, t) => {

let (es, ei) = es |> EvalState.next_evalenvid;

(es, (ei, VarBstMap.add(x, a, result_map_of_evalenv(env))));

};

let union = (es: EvalState.t, env1: t, env2: t): (EvalState.t, t) => {

let (es, ei) = es |> EvalState.next_evalenvid;

(

es,

(

ei,

VarBstMap.union(

(_, dr, _) => Some(dr),

result_map_of_evalenv(env1),

result_map_of_evalenv(env2),

),

),

);

};

let lookup = (env: t, x) =>

env |> result_map_of_evalenv |> VarBstMap.find_opt(x);

let contains = (env: t, x) =>

env |> result_map_of_evalenv |> VarBstMap.mem(x);

let map = (es: EvalState.t, f, env: t): (EvalState.t, t) => {

let (es, ei) = es |> EvalState.next_evalenvid;

(es, (ei, VarBstMap.mapi(f, result_map_of_evalenv(env))));

};

let map_keep_id = (f, env: t): t => (

id_of_evalenv(env),

VarBstMap.mapi(f, result_map_of_evalenv(env)),

);

let filter = (es: EvalState.t, f, env: t): (EvalState.t, t) => {

let (es, ei) = es |> EvalState.next_evalenvid;

(es, (ei, VarBstMap.filter(f, result_map_of_evalenv(env))));

};

let length = (env: t): int =>

VarBstMap.cardinal(result_map_of_evalenv(env));

let to_list = (env: t): list((Var.t, EvaluatorResult.t)) =>

env |> result_map_of_evalenv |> VarBstMap.bindings;
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Listing 13: EvalEnv.re

/* EvalEnvId.rei */

/* Identifier for an EvalEnv.t, generated by EvalEnvIdGen */

[@deriving sexp]

type t = int;

/* A special value used only by `EvalEnv.empty`. */

let empty: t;

Listing 14: EvalEnvId.rei

/* EvalEnvId.re */

open Sexplib.Std;

[@deriving sexp]

type t = int;

let empty: t = 0;

Listing 15: EvalEnvId.re

C.2.3 Evaluation

/* Evaluator.rei */

/* (...) */

let evaluate:

(EvalState.t, EvalEnv.t, DHExp.t) => (EvalState.t, EvaluatorResult.t);

/* (...) */

Listing 16: Evaluator.rei

/* Evaluator.re */

/* (...) */



APPENDIX C. SELECTED CODE SAMPLES 135

let rec evaluate =

(es: EvalState.t, env: EvalEnv.t, d: DHExp.t)

: (EvalState.t, EvaluatorResult.t) => {

/* Update evaluation statistics */

let es = es |> EvalState.inc_steps;

switch (d) {

| BoundVar(x) =>

let dr =

x

|> EvalEnv.lookup(env)

|> OptUtil.get(_ =>

raise(EvaluatorError.Exception(FreeInvalidVar(x)))

);

switch (dr) {

| BoxedValue(FixF(_) as d) => evaluate(es, env, d)

| _ => (es, dr)

};

| Let(dp, d1, d2) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(d1))

| (es, Indet(d1)) =>

switch (matches(dp, d1)) {

| Indet

| DoesNotMatch => (es, Indet(Closure(env, false, Let(dp, d1, d2))))

| Matches(env') =>

let (es, env) = extend_evalenv_with_env(es, env', env);

evaluate(es, env, d2);

}

}

| FixF(f, ty, d) =>

switch (evaluate(es, env, d)) {

| (es, BoxedValue(Closure(env', false, Fun(_) as d''') as d'')) =>

let (es, env'') =

EvalEnv.extend(es, env', (f, BoxedValue(FixF(f, ty, d''))));

(es, BoxedValue(Closure(env'', false, d''')));

| _ => raise(EvaluatorError.Exception(EvaluatorError.FixFWithoutLambda))

}

| Fun(_) => (es, BoxedValue(Closure(env, false, d)))

| Ap(d1, d2) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(Closure(closure_env, false, Fun(dp, _, d3)) as d1)) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2))

| (es, Indet(d2)) =>

switch (matches(dp, d2)) {

| DoesNotMatch

| Indet => (es, Indet(Ap(d1, d2)))

| Matches(env') =>

// evaluate a closure: extend the closure environment with the

// new bindings introduced by the function application.

let (es, env) = extend_evalenv_with_env(es, env', closure_env);

evaluate(es, env, d3);

}
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}

| (es, BoxedValue(Cast(d1', Arrow(ty1, ty2), Arrow(ty1', ty2'))))

| (es, Indet(Cast(d1', Arrow(ty1, ty2), Arrow(ty1', ty2')))) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2'))

| (es, Indet(d2')) =>

/* ap cast rule */

evaluate(es, env, Cast(Ap(d1', Cast(d2', ty1', ty1)), ty2, ty2'))

}

| (_, BoxedValue(d1')) =>

raise(EvaluatorError.Exception(InvalidBoxedFun(d1')))

| (es, Indet(d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2'))

| (es, Indet(d2')) => (es, Indet(Ap(d1', d2')))

}

}

| ApBuiltin(ident, args) => evaluate_ap_builtin(es, env, ident, args)

| ListNil(_)

| BoolLit(_)

| IntLit(_)

| FloatLit(_)

| Triv => (es, BoxedValue(d))

| BinBoolOp(op, d1, d2) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(BoolLit(b1) as d1')) =>

switch (eval_bin_bool_op_short_circuit(op, b1)) {

| Some(b3) => (es, b3)

| None =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(BoolLit(b2))) => (

es,

BoxedValue(eval_bin_bool_op(op, b1, b2)),

)

| (_, BoxedValue(d2')) =>

raise(EvaluatorError.Exception(InvalidBoxedBoolLit(d2')))

| (es, Indet(d2')) => (es, Indet(BinBoolOp(op, d1', d2')))

}

}

| (_, BoxedValue(d1')) =>

raise(EvaluatorError.Exception(InvalidBoxedBoolLit(d1')))

| (es, Indet(d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2'))

| (es, Indet(d2')) => (es, Indet(BinBoolOp(op, d1', d2')))

}

}

| BinIntOp(op, d1, d2) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(IntLit(n1) as d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(IntLit(n2))) =>

switch (op, n1, n2) {

| (Divide, _, 0) => (
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es,

Indet(

InvalidOperation(

BinIntOp(op, IntLit(n1), IntLit(n2)),

DivideByZero,

),

),

)

| _ => (es, BoxedValue(eval_bin_int_op(op, n1, n2)))

}

| (_, BoxedValue(d2')) =>

raise(EvaluatorError.Exception(InvalidBoxedIntLit(d2')))

| (es, Indet(d2')) => (es, Indet(BinIntOp(op, d1', d2')))

}

| (_, BoxedValue(d1')) =>

raise(EvaluatorError.Exception(InvalidBoxedIntLit(d1')))

| (es, Indet(d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2'))

| (es, Indet(d2')) => (es, Indet(BinIntOp(op, d1', d2')))

}

}

| BinFloatOp(op, d1, d2) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(FloatLit(f1) as d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(FloatLit(f2))) => (

es,

BoxedValue(eval_bin_float_op(op, f1, f2)),

)

| (_, BoxedValue(d2')) =>

raise(EvaluatorError.Exception(InvalidBoxedFloatLit(d2')))

| (es, Indet(d2')) => (es, Indet(BinFloatOp(op, d1', d2')))

}

| (_, BoxedValue(d1')) =>

raise(EvaluatorError.Exception(InvalidBoxedFloatLit(d1')))

| (es, Indet(d1')) =>

switch (evaluate(es, env, d2)) {

| (es, BoxedValue(d2'))

| (es, Indet(d2')) => (es, Indet(BinFloatOp(op, d1', d2')))

}

}

| Inj(ty, side, d1) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(d1')) => (es, BoxedValue(Inj(ty, side, d1')))

| (es, Indet(d1')) => (es, Indet(Inj(ty, side, d1')))

}

| Pair(d1, d2) =>

let (es, d1') = evaluate(es, env, d1);

let (es, d2') = evaluate(es, env, d2);

switch (d1', d2') {

| (Indet(d1), Indet(d2))

| (Indet(d1), BoxedValue(d2))

| (BoxedValue(d1), Indet(d2)) => (es, Indet(Pair(d1, d2)))
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| (BoxedValue(d1), BoxedValue(d2)) => (es, BoxedValue(Pair(d1, d2)))

};

| Cons(d1, d2) =>

let (es, d1') = evaluate(es, env, d1);

let (es, d2') = evaluate(es, env, d2);

switch (d1', d2') {

| (Indet(d1), Indet(d2))

| (Indet(d1), BoxedValue(d2))

| (BoxedValue(d1), Indet(d2)) => (es, Indet(Cons(d1, d2)))

| (BoxedValue(d1), BoxedValue(d2)) => (es, BoxedValue(Cons(d1, d2)))

};

| ConsistentCase(Case(d1, rules, n)) =>

evaluate_case(es, env, None, d1, rules, n)

/* Generalized closures evaluate to themselves. Only

lambda closures are BoxedValues; other closures are all Indet. */

| Closure(_, false, d') =>

switch (d') {

| Fun(_) => (es, BoxedValue(d))

| _ => (es, Indet(d))

}

/* For purposes of fill-and-resume, `Closure` expressions may not be final.

All closures are marked with a `re_eval` flag (the second parameter)

before resuming evaluation during fill-and-resume. After a Closure is

evaluated for the first time, then it does not need to be re-evaluated

when encountered in the future.

In addition, if a closure marks a filled hole, then the evaluation

may be memoized by hole closure. (See TODO, below.)

TODO: memoize the filling of the same hole instance. To do this, store

the hole instance in the `re_eval` field (make `re_eval` not only a

boolean flag) and store a mapping from ids to results in the

`EvalState.t` (replacing `FARInfo.t`).

*/

| Closure(env', true, d') => evaluate(es, env', d')

/* Hole expressions. Wrap in closure. */

| EmptyHole(_)

| FreeVar(_)

| Keyword(_)

| InvalidText(_) => (es, Indet(Closure(env, false, d)))

| InconsistentBranches(u, i, Case(d1, rules, n)) =>

evaluate_case(es, env, Some((u, i)), d1, rules, n)

| NonEmptyHole(reason, u, i, d1) =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(d1'))

| (es, Indet(d1')) => (

es,

Indet(Closure(env, false, NonEmptyHole(reason, u, i, d1'))),

)

}
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/* Cast calculus */

| Cast(d1, ty, ty') =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(d1') as result) =>

switch (ground_cases_of(ty), ground_cases_of(ty')) {

| (Hole, Hole) => (es, result)

| (Ground, Ground) =>

/* if two types are ground and consistent, then they are eq */

(es, result)

| (Ground, Hole) =>

/* can't remove the cast or do anything else here, so we're done */

(es, BoxedValue(Cast(d1', ty, ty')))

| (Hole, Ground) =>

/* by canonical forms, d1' must be of the form d<ty'' -> ?> */

switch (d1') {

| Cast(d1'', ty'', Hole) =>

if (HTyp.eq(ty'', ty')) {

(es, BoxedValue(d1''));

} else {

(es, Indet(FailedCast(d1', ty, ty')));

}

| _ =>

raise(EvaluatorError.Exception(CastBVHoleGround(d1')))

}

| (Hole, NotGroundOrHole(ty'_grounded)) =>

/* ITExpand rule */

let d' = DHExp.Cast(Cast(d1', ty, ty'_grounded), ty'_grounded, ty');

evaluate(es, env, d');

| (NotGroundOrHole(ty_grounded), Hole) =>

/* ITGround rule */

let d' = DHExp.Cast(Cast(d1', ty, ty_grounded), ty_grounded, ty');

evaluate(es, env, d');

| (Ground, NotGroundOrHole(_))

| (NotGroundOrHole(_), Ground) =>

/* can't do anything when casting between diseq, non-hole types */

(es, BoxedValue(Cast(d1', ty, ty')))

| (NotGroundOrHole(_), NotGroundOrHole(_)) =>

/* they might be eq in this case, so remove cast if so */

if (HTyp.eq(ty, ty')) {

(es, result);

} else {

(es, BoxedValue(Cast(d1', ty, ty')));

}

}

| (es, Indet(d1') as result) =>

switch (ground_cases_of(ty), ground_cases_of(ty')) {

| (Hole, Hole) => (es, result)

| (Ground, Ground) =>

/* if two types are ground and consistent, then they are eq */

(es, result)

| (Ground, Hole) =>

/* can't remove the cast or do anything else here, so we're done */

(es, Indet(Cast(d1', ty, ty')))

| (Hole, Ground) =>
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switch (d1') {

| Cast(d1'', ty'', Hole) =>

if (HTyp.eq(ty'', ty')) {

(es, Indet(d1''));

} else {

(es, Indet(FailedCast(d1', ty, ty')));

}

| _ => (es, Indet(Cast(d1', ty, ty')))

}

| (Hole, NotGroundOrHole(ty'_grounded)) =>

/* ITExpand rule */

let d' = DHExp.Cast(Cast(d1', ty, ty'_grounded), ty'_grounded, ty');

evaluate(es, env, d');

| (NotGroundOrHole(ty_grounded), Hole) =>

/* ITGround rule */

let d' = DHExp.Cast(Cast(d1', ty, ty_grounded), ty_grounded, ty');

evaluate(es, env, d');

| (Ground, NotGroundOrHole(_))

| (NotGroundOrHole(_), Ground) =>

/* can't do anything when casting between diseq, non-hole types */

(es, Indet(Cast(d1', ty, ty')))

| (NotGroundOrHole(_), NotGroundOrHole(_)) =>

/* it might be eq in this case, so remove cast if so */

if (HTyp.eq(ty, ty')) {

(es, result);

} else {

(es, Indet(Cast(d1', ty, ty')));

}

}

}

| FailedCast(d1, ty, ty') =>

switch (evaluate(es, env, d1)) {

| (es, BoxedValue(d1'))

| (es, Indet(d1')) => (es, Indet(FailedCast(d1', ty, ty')))

}

| InvalidOperation(d, err) => (es, Indet(InvalidOperation(d, err)))

};

}

and evaluate_case =

(

es: EvalState.t,

env: EvalEnv.t,

inconsistent_info: option(HoleClosure.t),

scrut: DHExp.t,

rules: list(DHExp.rule),

current_rule_index: int,

)

: (EvalState.t, EvaluatorResult.t) =>

switch (evaluate(es, env, scrut)) {

| (es, BoxedValue(scrut))

| (es, Indet(scrut)) =>

switch (List.nth_opt(rules, current_rule_index)) {

| None =>

let case = DHExp.Case(scrut, rules, current_rule_index);
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(

es,

switch (inconsistent_info) {

| None => Indet(Closure(env, false, ConsistentCase(case)))

| Some((u, i)) =>

Indet(Closure(env, false, InconsistentBranches(u, i, case)))

},

);

| Some(Rule(dp, d)) =>

switch (matches(dp, scrut)) {

| Indet =>

let case = DHExp.Case(scrut, rules, current_rule_index);

(

es,

switch (inconsistent_info) {

| None => Indet(Closure(env, false, ConsistentCase(case)))

| Some((u, i)) =>

Indet(Closure(env, false, InconsistentBranches(u, i, case)))

},

);

| Matches(env') =>

// extend environment with new bindings introduced

let (es, env) = extend_evalenv_with_env(es, env', env);

evaluate(es, env, d);

// by the rule and evaluate the expression.

| DoesNotMatch =>

evaluate_case(

es,

env,

inconsistent_info,

scrut,

rules,

current_rule_index + 1,

)

}

}

}

/* This function extends an EvalEnv.t with new bindings

(an Environment.t from match()). We need to wrap the new bindings

in a final judgment (BoxedValue or Indet), so we call evaluate()

on it again, but it shouldn't change the value of the expression. */

and extend_evalenv_with_env =

(es: EvalState.t, new_bindings: Environment.t, to_extend: EvalEnv.t)

: (EvalState.t, EvalEnv.t) => {

let (es, ei) = es |> EvalState.next_evalenvid;

let result_map =

List.fold_left(

(new_env, (x, d)) => {

/* The value of environment doesn't matter here */

let (_, dr) = evaluate(es, EvalEnv.empty, d);

VarBstMap.add(x, dr, new_env);

},

EvalEnv.result_map_of_evalenv(to_extend),
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new_bindings,

);

(es, (ei, result_map));

}

/* Evaluate the application of a built-in function. */

and evaluate_ap_builtin =

(es: EvalState.t, env: EvalEnv.t, ident: string, args: list(DHExp.t))

: (EvalState.t, EvaluatorResult.t) => {

switch (Builtins.lookup_form(ident)) {

| Some((eval, _)) => eval(es, env, args, evaluate)

| None => raise(EvaluatorError.Exception(InvalidBuiltin(ident)))

};

};

Listing 17: Evaluator.re

C.2.4 Postprocessing

/* EvalPostprocess.rei */

/* Postprocesses the evaluation result. This has two functions:

- Match the evaluation result generated by evaluation with substitution.

This means to continue evaluation within expressions for which evaluation

has not reached (e.g., lambda expression bodies, unmatched case and let

expression bodies), by looking up bound variables and assigning hole

environments.

- Number holes and generate a HoleClosureInfo.t that holds information

about all unique hole closures in the result.

The postprocessing steps are partially memoized by environments. (Only

memoized among hole instances which share the same environment.)

Algorithmically, this algorithm begins in the evaluated region of the

evaluation result inside the "evaluation boundary" (pp_eval),

and continues to the region outside the evaluation boundary (pp_uneval).

*/

let postprocess: DHExp.t => (HoleClosureInfo.t, DHExp.t);

Listing 18: EvalPostprocess.rei

/* EvalPostprocess.re */

/* Postprocess outside evaluation boundary */

let rec pp_uneval =
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(

hci: HoleClosureInfo_.t,

env: EvalEnv.t,

d: DHExp.t,

parent: HoleClosureParents.t_,

)

: (HoleClosureInfo_.t, DHExp.t) => {

switch (d) {

/* Bound variables should be looked up within the closure

environment. If lookup fails, then variable is not bound. */

| BoundVar(x) =>

switch (EvalEnv.lookup(env, x)) {

| Some(Indet(d'))

| Some(BoxedValue(d')) =>

let (hci, d'') = pp_eval(hci, d', parent);

(hci, d'');

| None => (hci, d)

}

/* Non-hole expressions: expand recursively */

| BoolLit(_)

| IntLit(_)

| FloatLit(_)

| ListNil(_)

| Triv => (hci, d)

| Let(dp, d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, Let(dp, d1', d2'));

| FixF(f, ty, d1) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

(hci, FixF(f, ty, d1'));

| Fun(dp, ty, d') =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

(hci, Fun(dp, ty, d''));

| Ap(d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, Ap(d1', d2'));

| ApBuiltin(f, args) =>

let (hci, args') =

List.fold_right(

(arg, (hci, args)) => {

let (hci, arg') = pp_uneval(hci, env, arg, parent);

(hci, [arg', ...args]);

},

args,

(hci, []),

);

(hci, ApBuiltin(f, args'));

| BinBoolOp(op, d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, BinBoolOp(op, d1', d2'));
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| BinIntOp(op, d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, BinIntOp(op, d1', d2'));

| BinFloatOp(op, d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, BinFloatOp(op, d1', d2'));

| Cons(d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, Cons(d1', d2'));

| Inj(ty, side, d') =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

(hci, Inj(ty, side, d''));

| Pair(d1, d2) =>

let (hci, d1') = pp_uneval(hci, env, d1, parent);

let (hci, d2') = pp_uneval(hci, env, d2, parent);

(hci, Pair(d1', d2'));

| Cast(d', ty1, ty2) =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

(hci, Cast(d'', ty1, ty2));

| FailedCast(d', ty1, ty2) =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

(hci, FailedCast(d'', ty1, ty2));

| InvalidOperation(d', reason) =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

(hci, InvalidOperation(d'', reason));

| ConsistentCase(Case(scrut, rules, i)) =>

let (hci, scrut') = pp_uneval(hci, env, scrut, parent);

let (hci, rules') = pp_uneval_rules(hci, env, rules, parent);

(hci, ConsistentCase(Case(scrut', rules', i)));

/* Closures shouldn't exist inside other closures */

| Closure(_) => raise(EvalPostprocessError.Exception(ClosureInsideClosure))

/* Hole expressions:

- Use the closure environment as the hole environment.

- Number the hole closure appropriately.

- Recurse through inner expression (if any).

Note: we still have to recurse through the hole boundary in order

to set the correct hole parents; however, this is only at most

one depth of repeated traversal through the environment

*/

| EmptyHole(u, _) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, EmptyHole(u, i)),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));
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let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, EmptyHole(u, i)));

};

| NonEmptyHole(reason, u, _, d') =>

let (hci, d'') = pp_uneval(hci, env, d', parent);

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, NonEmptyHole(reason, u, i, d'')),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, NonEmptyHole(reason, u, i, d'')));

};

| Keyword(u, _, kw) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, Keyword(u, i, kw)),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, Keyword(u, i, kw)));

};

| FreeVar(u, _, x) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, FreeVar(u, i, x)),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, FreeVar(u, i, x)));

};

| InvalidText(u, _, text) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, InvalidText(u, i, text)),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, InvalidText(u, i, text)));

};

| InconsistentBranches(u, _, Case(d', rules, i)) =>

let (hci, d'') = pp_uneval(hci, env, d', parent);
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let (hci, rules') = pp_uneval_rules(hci, env, rules, parent);

let case' = DHExp.Case(d'', rules', i);

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env, parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env) => (

hci,

Closure(env, false, InconsistentBranches(u, i, case')),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env, (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env, false, InconsistentBranches(u, i, case')));

};

};

}

and pp_uneval_rules =

(

hci: HoleClosureInfo_.t,

env: EvalEnv.t,

rules: list(DHExp.rule),

parent: HoleClosureParents.t_,

)

: (HoleClosureInfo_.t, list(DHExp.rule)) =>

List.fold_right(

(DHExp.Rule(dp, d), (hci, rules)) => {

let (hci, d') = pp_uneval(hci, env, d, parent);

(hci, [DHExp.Rule(dp, d'), ...rules]);

},

rules,

(hci, []),

)

/* Postprocess inside evaluation boundary */

and pp_eval =

(hci: HoleClosureInfo_.t, d: DHExp.t, parent: HoleClosureParents.t_)

: (HoleClosureInfo_.t, DHExp.t) =>

switch (d) {

/* Non-hole expressions: recurse through subexpressions */

| BoolLit(_)

| IntLit(_)

| FloatLit(_)

| ListNil(_)

| Triv => (hci, d)

| FixF(f, ty, d1) =>

let (hci, d1') = pp_eval(hci, d1, parent);

(hci, FixF(f, ty, d1'));

| Ap(d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, Ap(d1', d2'));

| ApBuiltin(f, args) =>

let (hci, args') =

List.fold_right(
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(arg, (hci, args)) => {

let (hci, arg') = pp_eval(hci, arg, parent);

(hci, [arg', ...args]);

},

args,

(hci, []),

);

(hci, ApBuiltin(f, args'));

| BinBoolOp(op, d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, BinBoolOp(op, d1', d2'));

| BinIntOp(op, d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, BinIntOp(op, d1', d2'));

| BinFloatOp(op, d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, BinFloatOp(op, d1', d2'));

| Cons(d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, Cons(d1', d2'));

| Inj(ty, side, d') =>

let (hci, d'') = pp_eval(hci, d', parent);

(hci, Inj(ty, side, d''));

| Pair(d1, d2) =>

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_eval(hci, d2, parent);

(hci, Pair(d1', d2'));

| Cast(d', ty1, ty2) =>

let (hci, d'') = pp_eval(hci, d', parent);

(hci, Cast(d'', ty1, ty2));

| FailedCast(d', ty1, ty2) =>

let (hci, d'') = pp_eval(hci, d', parent);

(hci, FailedCast(d'', ty1, ty2));

| InvalidOperation(d', reason) =>

let (hci, d'') = pp_eval(hci, d', parent);

(hci, InvalidOperation(d'', reason));

/* Bound variables should not appear outside holes or closures */

| BoundVar(x) =>

raise(EvalPostprocessError.Exception(BoundVarOutsideClosure(x)))

/* Lambda should not appear outside closure in evaluated result */

| Let(_)

| ConsistentCase(_)

| Fun(_)

| EmptyHole(_)

| NonEmptyHole(_)

| Keyword(_)

| FreeVar(_)

| InvalidText(_)
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| InconsistentBranches(_) =>

raise(EvalPostprocessError.Exception(UnevalOutsideClosure))

/* Closure */

| Closure(env', _, d') =>

switch (d') {

| Fun(dp, ty, d'') =>

let (hci, d'') = pp_uneval(hci, env', d'', parent);

(hci, Fun(dp, ty, d''));

| Let(dp, d1, d2) =>

/* d1 should already be evaluated, d2 is not */

let (hci, d1') = pp_eval(hci, d1, parent);

let (hci, d2') = pp_uneval(hci, env', d2, parent);

(hci, Let(dp, d1', d2'));

| ConsistentCase(Case(scrut, rules, i)) =>

/* scrut should already be evaluated, rule bodies are not */

let (hci, scrut') = pp_eval(hci, scrut, parent);

let (hci, rules') = pp_uneval_rules(hci, env', rules, parent);

(hci, ConsistentCase(Case(scrut', rules', i)));

/* Holes: should be left in closures in the result */

| EmptyHole(u, _) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') => (

hci,

Closure(env', false, EmptyHole(u, i)),

)

| NewClosure(hci, i) =>

let (hci, env) = pp_eval_hole_env(hci, env', (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env);

(hci, Closure(env', false, EmptyHole(u, i)));

};

| NonEmptyHole(reason, u, _, d') =>

let (hci, d'') = pp_eval(hci, d', parent);

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') => (

hci,

Closure(env', false, NonEmptyHole(reason, u, i, d'')),

)

| NewClosure(hci, i) =>

let (hci, env') = pp_eval_hole_env(hci, env', (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env');

(hci, Closure(env', false, NonEmptyHole(reason, u, i, d'')));

};

| Keyword(u, _, kw) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') => (

hci,

Closure(env', false, Keyword(u, i, kw)),

)

| NewClosure(hci, i) =>
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let (hci, env') = pp_eval_hole_env(hci, env', (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env');

(hci, Closure(env', false, Keyword(u, i, kw)));

};

| FreeVar(u, _, x) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') => (

hci,

Closure(env', false, FreeVar(u, i, x)),

)

| NewClosure(hci, i) =>

let (hci, env') = pp_eval_hole_env(hci, env', (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env');

(hci, Closure(env', false, FreeVar(u, i, x)));

};

| InvalidText(u, _, text) =>

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') => (

hci,

Closure(env', false, InvalidText(u, i, text)),

)

| NewClosure(hci, i) =>

let (hci, env') = pp_eval_hole_env(hci, env', (u, i));

let hci = HoleClosureInfo_.update_hc_env(hci, u, env');

(hci, Closure(env', false, InvalidText(u, i, text)));

};

| InconsistentBranches(u, _, Case(d', rules, case_i)) =>

let (hci, d'') = pp_eval(hci, d', parent);

let hc_id_res = HoleClosureInfo_.get_hc_id(hci, u, env', parent);

switch (hc_id_res) {

| ExistClosure(hci, i, env') =>

let (hci, rules') = pp_uneval_rules(hci, env', rules, parent);

(

hci,

Closure(

env',

false,

InconsistentBranches(u, i, Case(d'', rules', case_i)),

),

);

| NewClosure(hci, i) =>

let (hci, env') = pp_eval_hole_env(hci, env', (u, i));

let (hci, rules') = pp_uneval_rules(hci, env', rules, parent);

let hci = HoleClosureInfo_.update_hc_env(hci, u, env');

(

hci,

Closure(

env',

false,

InconsistentBranches(u, i, Case(d'', rules', case_i)),

),

);
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};

/* Fill-and-resume: may be possible to have other expression

types inside a closure. */

| _ => pp_uneval(hci, env', d', parent)

}

/* Hole expressions:

- Fix environment recursively.

- Number the hole closure appropriately.

- Recurse through subexpressions if applicable. */

}

/* Apply pp_eval to each expression in sigma,

threading hci throughout.

hc is the current HoleClosure.t, which will be set as the

parent of any holes directly in the subexpressions

*/

and pp_eval_hole_env =

(hci: HoleClosureInfo_.t, sigma: EvalEnv.t, parent_hc: HoleClosure.t)

: (HoleClosureInfo_.t, EvalEnv.t) => {

let ei = sigma |> EvalEnv.id_of_evalenv;

let (hci, result_map) =

VarBstMap.fold(

(x, dr: EvaluatorResult.t, (hci, new_env)) => {

let (hci, dr: EvaluatorResult.t) =

switch (dr) {

| BoxedValue(d) =>

let (hci, d) = pp_eval(hci, d, (x, parent_hc));

(hci, BoxedValue(d));

| Indet(d) =>

let (hci, d) = pp_eval(hci, d, (x, parent_hc));

(hci, Indet(d));

};

(hci, VarBstMap.add(x, dr, new_env));

},

sigma |> EvalEnv.result_map_of_evalenv,

(hci, VarBstMap.empty),

);

(hci, (ei, result_map));

};

/* Postprocessing driver.

See also HoleClosureInfo.rei /HoleClosureInfo_.rei.

*/

let postprocess = (d: DHExp.t): (HoleClosureInfo.t, DHExp.t) => {

let (hci, d) =

pp_eval(HoleClosureInfo_.empty, d, ("", HoleClosure.result_hc));

(hci |> HoleClosureInfo_.to_hole_closure_info, d);

};
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Listing 19: EvalPostprocess.re

/* Program.re */

/* (...) */

let get_result = (program: t): Result.t => {

switch (program |> get_elaboration |> evaluate) {

| (es, BoxedValue(d)) =>

let (hci, d_postprocessed) =

switch (d |> EvalPostprocess.postprocess) {

| d => d

| exception (EvalPostprocessError.Exception(reason)) =>

raise(PostprocessError(reason))

};

Result.mk(BoxedValue(d_postprocessed), d, hci, es);

| (es, Indet(d)) =>

let (hci, d_postprocessed) =

switch (d |> EvalPostprocess.postprocess) {

| d => d

| exception (EvalPostprocessError.Exception(reason)) =>

raise(PostprocessError(reason))

};

Result.mk(BoxedValue(d_postprocessed), d, hci, es);

| exception (EvaluatorError.Exception(reason)) => raise(EvalError(reason))

};

};

/* (...) */

Listing 20: Program.re

/* Result.rei */

/* The result of a program evaluation.

Components:

- `EvaluatorResult.t`: (postprocessed) evaluation result

- `HoleClosureInfo.t`: information about the holes /hole

closure numbers (from postprocessing)

- `DHExp.t`: un-postprocessed evaluation result (start point for

evaluation of fill-and-resume)

- `Delta.t`: hole context info (from elaboration, for fill-and-resume)

- `EvalState.t`: evaluation state (for fill-and-resume)

*/

[@deriving sexp]

type t;
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/* First argument is the postprocessed result, second argument is

the un-postprocessed result (raw evaluation result). */

let mk: (EvaluatorResult.t, DHExp.t, HoleClosureInfo.t, EvalState.t) => t;

/* For displaying the result */

let get_dhexp: t => DHExp.t;

let get_result: t => EvaluatorResult.t;

let get_hci: t => HoleClosureInfo.t;

/* For fill-and-resume /continuing evaluation */

let get_eval_state: t => EvalState.t;

let get_unpostprocessed_dhexp: t => DHExp.t;

/* See DHExp.fast_equals. Also checks that all environments

in the HoleClosureInfo.t are equal. */

let fast_equals: (t, t) => bool;

Listing 21: Result.rei

/* Result.re */

[@deriving sexp]

type t = (EvaluatorResult.t, DHExp.t, HoleClosureInfo.t, EvalState.t);

let mk =

(

dr_result: EvaluatorResult.t,

d_unpostprocessed: DHExp.t,

hci: HoleClosureInfo.t,

es: EvalState.t,

)

: t => (

dr_result,

d_unpostprocessed,

hci,

es,

);

let get_result = ((d, _, _, _): t) => d;

let get_dhexp = (r: t) =>

switch (r |> get_result) {

| BoxedValue(d)

| Indet(d) => d

};

let get_hci = ((_, _, hci, _): t) => hci;

let get_eval_state = ((_, _, _, es): t) => es;
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let get_unpostprocessed_dhexp = ((_, d_unpostprocessed, _, _): t) => d_unpostprocessed;

let final_dhexp_equals = (r1: EvaluatorResult.t, r2: EvaluatorResult.t): bool => {

switch (r1, r2) {

| (BoxedValue(d1), BoxedValue(d2))

| (Indet(d1), Indet(d2)) => DHExp.fast_equals(d1, d2)

| _ => false

};

};

let fast_equals = ((r1, _, hci1, _): t, (r2, _, hci2, _): t): bool => {

/* Check that HoleClosureInstances are equal */

MetaVarMap.cardinal(hci1) == MetaVarMap.cardinal(hci2)

&& List.for_all2(

/* Check that all holes are equal */

((u1, hcs1), (u2, hcs2)) =>

u1 == u2

&& List.length(hcs1) == List.length(hcs2)

&& List.for_all2(

/* Check that all hole closures are equal */

((sigma1, _), (sigma2, _)) =>

EvalEnv.id_of_evalenv(sigma1)

== EvalEnv.id_of_evalenv(sigma2)

&& List.for_all2(

/* Check that variable mappings in evalenv are equal */

((x1, r1), (x2, r2)) =>

x1 == x2 && final_dhexp_equals(r1, r2),

EvalEnv.alist_of_evalenv(sigma1),

EvalEnv.alist_of_evalenv(sigma2),

),

hcs1,

hcs2,

),

MetaVarMap.bindings(hci1),

MetaVarMap.bindings(hci2),

)

/* Check that r1, r2 are equal */

&& final_dhexp_equals(r1, r2);

};

Listing 22: Result.re

C.2.5 Unique hole closures

/* MetaVar.rei */

/* A `MetaVar.t` represents a hole number `u`.

The name "metavar" comes from CMTT. */

[@deriving sexp]
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type t = int;

let eq: (t, t) => bool;

Listing 23: MetaVar.rei

/* MetaVar.re */

open Sexplib.Std;

[@deriving sexp]

type t = int;

let eq = (x: t, y: t) => x === y;

Listing 24: MetaVar.re

/* HoleClosureId.rei */

/* Identifier for a hole closure (unique among

hole closures for a given hole number)

*/

[@deriving sexp]

type t = int;

Listing 25: HoleClosureId.rei

/* HoleClosureId.re */

open Sexplib.Std;

[@deriving sexp]

type t = int;

Listing 26: HoleClosureId.re

/* HoleClosure.rei */

/* Representation of a hole closure (the set of hole

instances with the same hole number and environment)
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Replacement for HoleInstance.t (due to performance issue,

should group instances with the same environment together)

*/

[@deriving sexp]

type t = (MetaVar.t, HoleClosureId.t);

let u_of_hc: t => MetaVar.t;

let i_of_hc: t => HoleClosureId.t;

/* Special HoleClosure.t used to represent the parent

"hole instance" of the result. That is to say, if a hole

instance has this value as its parent, then it is

directly in the result.

*/

let result_hc: t;

Listing 27: HoleClosure.rei

/* HoleClosure.re */

open Sexplib.Std;

[@deriving sexp]

type t = int;

Listing 28: HoleClosure.re

/* HoleClosureInfo_.rei */

/* Auxiliary data structure for constructing a

HoleClosureInfo.t. Useful for building the HoleClosureInfo,

because we can index /lookup by EvalEnvId. However,

when using it we want sequential numbers (HoleClosureId)

to identify the hole closures (similar to HoleInstanceInfo.t).

*/

[@deriving sexp]

type t =

MetaVarMap.t(

EvalEnvIdMap.t((HoleClosureId.t, EvalEnv.t, HoleClosureParents.t)),

);

let empty: t;

/* The result type for function `get_hc_id`, which is similar to the

`next` function in HoleInstanceInfo. If the given closure exists

in type t, the result also includes the EvalEnv.t stored; otherwise,

it's a new closure and no EvalEnv shall be returned.
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*/

type hc_id_result =

| ExistClosure(t, HoleClosureId.t, EvalEnv.t)

| NewClosure(t, HoleClosureId.t);

/* Gets the hole closure id of a hole closure with the given

hole number and hole environment. Also adds the current parent

hole closure to the HoleClosureInfo_.t.

If a hole closure with this hole number and environment already

exists in the HoleClosureInfo_.t, then the parent hole closure is

added to the HoleClosureInfo_.t, and the HoleClosureId.t and

environment of the existing hole closure is returned.

Otherwise, a new HoleClosureId.t is assigned to this hole closure,

and is inserted into the HoleClosureId_.t. This is returned, along

with a None EvalEnv.t.

(similar to HoleInstanceInfo.next, but memoized by EvalEnvId.t)

*/

let get_hc_id:

(t, MetaVar.t, EvalEnv.t, HoleClosureParents.t_) => hc_id_result;

/* Updates the environment of the specified hole closure.

(similar to HoleInstanceInfo.update_environment)

*/

let update_hc_env: (t, MetaVar.t, EvalEnv.t) => t;

/* Converts HoleClosureInfo_.t to HoleClosureInfo.t */

let to_hole_closure_info: t => HoleClosureInfo.t;

Listing 29: HoleClosureInfo .rei

/* HoleClosureInfo_.re */

[@deriving sexp]

type t =

MetaVarMap.t(

EvalEnvIdMap.t((HoleClosureId.t, EvalEnv.t, HoleClosureParents.t)),

);

let empty = MetaVarMap.empty;

type hc_id_result =

| ExistClosure(t, HoleClosureId.t, EvalEnv.t)

| NewClosure(t, HoleClosureId.t);

let get_hc_id =

(hci: t, u: MetaVar.t, sigma: EvalEnv.t, parent: HoleClosureParents.t_)

: hc_id_result => {

let ei = sigma |> EvalEnv.id_of_evalenv;
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switch (hci |> MetaVarMap.find_opt(u)) {

/* Hole already exists in the HoleClosureInfo_.t */

| Some(hcs) =>

switch (hcs |> EvalEnvIdMap.find_opt(ei)) {

/* Hole closure already exists in the HoleClosureInfo_.t.

Add parent_eid to eids */

| Some((i, sigma, hole_parents)) =>

ExistClosure(

hci

|> MetaVarMap.add(

u,

hcs

|> EvalEnvIdMap.add(

ei,

(

i,

sigma,

parent |> HoleClosureParents.add_parent(hole_parents),

),

),

),

i,

sigma,

)

/* Hole exists in the HoleClosureInfo_.t but closure doesn't.

Create a new hole closure with closure id equal to the number

of unique hole closures for the hole. Return a None environment */

| None =>

let i = hcs |> EvalEnvIdMap.cardinal;

NewClosure(

hci

|> MetaVarMap.add(

u,

hcs

|> EvalEnvIdMap.add(

ei,

(i, sigma, parent |> HoleClosureParents.singleton),

),

),

i,

);

}

/* Hole doesn't exist in the HoleClosureInfo_.t */

| None =>

NewClosure(

hci

|> MetaVarMap.add(

u,

EvalEnvIdMap.singleton(

ei,

(0, sigma, parent |> HoleClosureParents.singleton),

),

),

0,
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)

};

};

let update_hc_env = (hci: t, u: MetaVar.t, sigma: EvalEnv.t): t => {

let ei = sigma |> EvalEnv.id_of_evalenv;

hci

|> MetaVarMap.update(

u,

Option.map(hcs => {

hcs

|> EvalEnvIdMap.update(

ei,

Option.map(((hcid, _, parents)) => (hcid, sigma, parents)),

)

}),

);

};

let to_hole_closure_info = (hci: t): HoleClosureInfo.t =>

/* For each hole, arrange closures in order of increasing hole

closure id. */

hci

|> MetaVarMap.map(

(

hcs:

EvalEnvIdMap.t(

(HoleClosureId.t, EvalEnv.t, HoleClosureParents.t),

),

) =>

hcs

|> EvalEnvIdMap.bindings

|> List.sort(((_, (i1, _, _)), (_, (i2, _, _))) =>

compare(i1, i2)

)

|> List.map(((_, (_, sigma, hc_parents))) => (sigma, hc_parents))

);

Listing 30: HoleClosureInfo .re

/* HoleClosureInfo.rei */

/* Stores information about all hole closures reachable

by a program's evaluation result. Used in the context

inspector.

Constructed using HoleClosureInfo_.t. */

[@deriving sexp]

type t = MetaVarMap.t(list((EvalEnv.t, HoleClosureParents.t)));

let empty: t;
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/* Number of unique closures for a given hole. */

let num_unique_hcs: (t, MetaVar.t) => int;

/* Returns the information for a given hole and hole closure

id, if found. */

let find_hc_opt:

(t, MetaVar.t, HoleClosureId.t) =>

option((EvalEnv.t, HoleClosureParents.t));

Listing 31: HoleClosureInfo.rei

/* HoleClosureInfo.re */

open Sexplib.Std;

[@deriving sexp]

type t = MetaVarMap.t(list((EvalEnv.t, HoleClosureParents.t)));

let empty: t = MetaVarMap.empty;

let num_unique_hcs = (hci: t, u: MetaVar.t): int => {

switch (hci |> MetaVarMap.find_opt(u)) {

| Some(hcs) => hcs |> List.length

| None => 0

};

};

let find_hc_opt =

(hci: t, u: MetaVar.t, i: HoleClosureId.t)

: option((EvalEnv.t, HoleClosureParents.t)) => {

switch (hci |> MetaVarMap.find_opt(u)) {

| Some(hcs) => List.nth_opt(hcs, i)

| None => None

};

};

Listing 32: HoleClosureInfo.re

/* HoleClosureParents.rei */

/* List of hole closure parents. Analogous to InstancePath, but a single

hole closure (set of closures with the same environment) may have

multiple parents.

*/

[@deriving sexp]
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type t_ = (Var.t, HoleClosure.t)

and t = list(t_);

let add_parent: (t, t_) => t;

let to_list: t => list(t_);

let singleton: t_ => t;

Listing 33: HoleClosureParents.rei

/* HoleClosureParents.re */

open Sexplib.Std;

[@deriving sexp]

type t_ = (Var.t, HoleClosure.t)

and t = list(t_);

let add_parent = (hcp: t, new_parent: t_) => [

new_parent,

...List.filter(p => p != new_parent, hcp),

];

let to_list = (hcp: t): list(t_) => hcp;

let singleton = (parent: t_) => [parent];

Listing 34: HoleClosureParents.re

C.2.6 FAR

/* FillAndResume.rei */

/* Utilities for fill-and-resume. Fill-and-resume is an alternative

strategy for evaluation that can be performed if all changes in

a recent update happen within a hole in an earlier state, avoiding

re-evaluation of the program from the start. Originally described

in the Hazelnut Live 2019 paper.

See usage in `Model.update_program`.

*/

/* Perform the fill operation. Fill hole `u` with the provided

DHExp.t in the result.

fill(exp_to_fill, u, prev_program_result) => filled_program_result

Note that this operates on the UHExp.t level, since hole filling is
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operationally on that level. */

let fill: (DHExp.t, MetaVar.t, Result.t) => Result.t;

/* Determine if a new program is a filled version of a past program.

is_fill_viable(old_program, new_program) =>

None if a fill is not viable (perform regular evaluation)

Some((exp_to_fill, u)) if a fill is viable (perform fill-and-resume)

Essentially performs a structural diff on the programs' elaborated

expressions, and returns a hole if the root of the diff lies in a hole.

See `DiffDHExp.rei` for more details about the diff-ing process.

TODO: This can be applied on multiple past states. Currently, it is

only applied on the most recent state. This should be a relatively

inexpensive computation, so this should be reasonable. */

let is_fill_viable: (Program.t, Program.t) => option((DHExp.t, MetaVar.t));

Listing 35: FillAndResume.rei

/* FillAndResume.re */

/* Preprocesses the previous evaluation result before re-evaluating with

fill-and-resume. Performs two actions:

- Set the `re_eval` flag of `DHExp.Closure` variants to `true` so they

will be re-evaluated.

- Substitute holes with the matching hole number.

*/

let rec preprocess = (u: MetaVar.t, d_fill: DHExp.t, d: DHExp.t): DHExp.t => {

let preprocess: DHExp.t => DHExp.t = preprocess(u, d_fill);

switch (d) {

/* Hole types: fill if the hole number matches. */

| EmptyHole(u', _)

| Keyword(u', _, _)

| FreeVar(u', _, _)

| InvalidText(u', _, _) => u == u' ? d_fill : d

| NonEmptyHole(reason, u', i, d) =>

u == u' ? d_fill : NonEmptyHole(reason, u, i, d |> preprocess)

| InconsistentBranches(u', i, Case(scrut, rules, case_i)) =>

u == u'

? d_fill

: InconsistentBranches(

u',

i,

Case(

scrut |> preprocess,

rules

|> List.map((DHExp.Rule(dp, d)) =>

DHExp.Rule(dp, d |> preprocess)
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),

case_i,

),

)

/* Generalized closures: need to set the `re_eval` flag

to true, and recurse through the environment.

TODO: memoize environments so we don't need to re-preprocess

the same environment every time it is re-encountered.

*/

| Closure(env, _, d) =>

Closure(

env

|> EvalEnv.map_keep_id((_, dr) =>

switch (dr) {

| Indet(d) => Indet(d |> preprocess)

| BoxedValue(d) => BoxedValue(d |> preprocess)

}

),

true,

d |> preprocess,

)

/* Other expressions forms: simply recurse through subexpressions. */

| BoolLit(_)

| IntLit(_)

| FloatLit(_)

| BoundVar(_)

| Triv => d

| Let(dp, d1, d2) => Let(dp, d1 |> preprocess, d2 |> preprocess)

| FixF(x, ty, d) => FixF(x, ty, d |> preprocess)

| Fun(dp, ty, d) => Fun(dp, ty, d |> preprocess)

| Ap(d1, d2) => Ap(d1 |> preprocess, d2 |> preprocess)

| ApBuiltin(f, args) => ApBuiltin(f, args |> List.map(preprocess))

| BinBoolOp(op, d1, d2) =>

BinBoolOp(op, d1 |> preprocess, d2 |> preprocess)

| BinIntOp(op, d1, d2) => BinIntOp(op, d1 |> preprocess, d2 |> preprocess)

| BinFloatOp(op, d1, d2) =>

BinFloatOp(op, d1 |> preprocess, d2 |> preprocess)

| ListNil(_ty) => d

| Cons(d1, d2) => Cons(d1 |> preprocess, d2 |> preprocess)

| Inj(ty, side, d) => Inj(ty, side, d |> preprocess)

| Pair(d1, d2) => Pair(d1 |> preprocess, d2 |> preprocess)

| ConsistentCase(Case(scrut, rules, i)) =>

ConsistentCase(

Case(

scrut |> preprocess,

rules

|> List.map((DHExp.Rule(dp, d)) => DHExp.Rule(dp, d |> preprocess)),

i,

),

)

| Cast(d, ty1, ty2) => Cast(d |> preprocess, ty1, ty2)
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| FailedCast(d, ty1, ty2) => FailedCast(d |> preprocess, ty1, ty2)

| InvalidOperation(d, reason) => InvalidOperation(d |> preprocess, reason)

};

};

let fill = (d: DHExp.t, u: MetaVar.t, prev_result: Result.t): Result.t => {

/* Perform FAR preprocessing (fill) */

let d_result =

prev_result |> Result.get_unpostprocessed_dhexp |> preprocess(u, d);

/* Re-start evaluation */

let (es, dr_result) =

switch (

d_result

|> Evaluator.evaluate(

prev_result |> Result.get_eval_state,

EvalEnv.empty,

)

) {

| (es, dr_result) => (es, dr_result)

| exception (EvaluatorError.Exception(err)) =>

raise(Program.EvalError(err))

};

/* Ordinary postprocessing */

let (hci, d_result, dr_postprocessed) =

switch (dr_result) {

| Indet(d) =>

let (hci, d_postprocessed) =

switch (EvalPostprocess.postprocess(d)) {

| hci_d => hci_d

| exception (EvalPostprocessError.Exception(err)) =>

raise(Program.PostprocessError(err));

};

(hci, d, EvaluatorResult.Indet(d_postprocessed));

| BoxedValue(d) =>

let (hci, d_postprocessed) =

switch (EvalPostprocess.postprocess(d)) {

| hci_d => hci_d

| exception (EvalPostprocessError.Exception(err)) =>

raise(Program.PostprocessError(err));

};

(hci, d, EvaluatorResult.BoxedValue(d_postprocessed));

};

Result.mk(dr_postprocessed, d_result, hci, es);

};

let is_fill_viable =

(old_prog: Program.t, new_prog: Program.t): option((DHExp.t, MetaVar.t)) => {

let e1 = old_prog |> Program.get_uhexp;

let e2 = new_prog |> Program.get_uhexp;
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let elaborate = (e: UHExp.t): DHExp.t => {

exception DoesNotElaborateError;

switch (e |> Elaborator_Exp.syn_elab(VarCtx.empty, Delta.empty)) {

| Elaborator_Exp.ElaborationResult.Elaborates(d, _, _) => d

| _ => raise(DoesNotElaborateError)

};

};

switch (DiffDHExp.diff_dhexp(e1 |> elaborate, e2 |> elaborate)) {

| NonFillDiff

| NoDiff => None

| FillDiff(d, u) => Some((d, u))

};

};

Listing 36: FillAndResume.re

/* DiffDHExp.rei */

/* Structural diff judgment.

- NoDiff: internal expressions are the same

- NonFillDiff: diff is not rooted in a hole

- FillDiff: diff is rooted in a hole, return fill parameters `d`, `u`

*/

[@deriving sexp]

type t =

| NoDiff

| NonFillDiff

| FillDiff(DHExp.t, MetaVar.t);

/* Compare two `DHExp.t`s, returning a difference judgment of type `t`. */

let diff_dhexp: (DHExp.t, DHExp.t) => t;

Listing 37: DiffDHExp.rei

/* DiffDHExp.re */

type error =

| ClosureInUnevaluatedExp

| DiffNotImplemented;

exception Exception(error);

[@deriving sexp]

type t =

| NoDiff
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| NonFillDiff

| FillDiff(DHExp.t, MetaVar.t);

let get_hole_number_of_dhexp = (d: DHExp.t): option(MetaVar.t) => {

switch (d) {

| EmptyHole(u, _)

| NonEmptyHole(_, u, _, _)

| Keyword(u, _, _)

| FreeVar(u, _, _)

| InvalidText(u, _, _) => Some(u)

| _ => None

};

};

let rec diff_dhexp = (d1: DHExp.t, d2: DHExp.t): t => {

/* First, we compare two expressions of the same form, to see if the current

node should be the diff root. If the expressions are not of the same form,

we check if `d1` is a hole expression. */

switch (d1, d2) {

/* Closures should not appear in elaborated, non-evaluated result.

Don't technically need to throw an error since this should never come up.

But here just in case. */

| (Closure(_), _)

| (_, Closure(_)) => raise(Exception(ClosureInUnevaluatedExp))

/* Diffing leaf expressions: if different, this is the (non-fill)

root of the diff */

| (Triv, Triv) => NoDiff

| (BoolLit(_), BoolLit(_))

| (IntLit(_), IntLit(_))

| (FloatLit(_), FloatLit(_))

| (BoundVar(_), BoundVar(_))

| (ListNil(_), ListNil(_)) => d1 == d2 ? NoDiff : NonFillDiff

/* Diffing expressions with one subexpression:

- If current node is diff, then current node is diff root.

- Else use child's diff. */

| (Inj(ty1, side1, d1'), Inj(ty2, side2, d2')) =>

ty1 != ty2 || side1 != side2 ? NonFillDiff : diff_dhexp(d1', d2')

| (FixF(x1, ty1, d1'), FixF(x2, ty2, d2')) =>

x1 != x2 || ty1 != ty2 ? NonFillDiff : diff_dhexp(d1', d2')

| (Fun(dp1, ty1, d1'), Fun(dp2, ty2, d2')) =>

dp1 != dp2 || ty1 != ty2 ? NonFillDiff : diff_dhexp(d1', d2')

| (Cast(d1', ty1, ty1'), Cast(d2', ty2, ty2'))

| (FailedCast(d1', ty1, ty1'), FailedCast(d2', ty2, ty2')) =>

ty1 != ty2 || ty1' != ty2' ? NonFillDiff : diff_dhexp(d1', d2')

| (InvalidOperation(d1', reason1), InvalidOperation(d2', reason2)) =>

reason1 != reason2 ? NonFillDiff : diff_dhexp(d1', d2')

/* Diffing expressions with more than one subexpression:

- If current node is diff, then current node is diff root.

- Else check children (see `diff_children2`)

*/

| (Let(dp1, d11, d12), Let(dp2, d21, d22)) =>
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dp1 != dp2 ? NonFillDiff : diff_children2(d11, d12, d21, d22)

| (Ap(d11, d12), Ap(d21, d22))

| (Cons(d11, d12), Cons(d21, d22))

| (Pair(d11, d12), Pair(d21, d22)) => diff_children2(d11, d12, d21, d22)

| (BinBoolOp(op1, d11, d12), BinBoolOp(op2, d21, d22)) =>

op1 != op2 ? NonFillDiff : diff_children2(d11, d12, d21, d22)

| (BinIntOp(op1, d11, d12), BinIntOp(op2, d21, d22)) =>

op1 != op2 ? NonFillDiff : diff_children2(d11, d12, d21, d22)

| (BinFloatOp(op1, d11, d12), BinFloatOp(op2, d21, d22)) =>

op1 != op2 ? NonFillDiff : diff_children2(d11, d12, d21, d22)

/* Expression variants with >2 subexpressions */

| (ApBuiltin(f1, args1), ApBuiltin(f2, args2)) =>

f1 != f2 ? NonFillDiff : diff_children(args1, args2)

| (ConsistentCase(case1), ConsistentCase(case2)) =>

diff_case(case1, case2)

/* Diffing hole expressions: if the hole is different or if there is a

non-fill child diff, then this becomes the new root of the diff. */

| (EmptyHole(u, _), EmptyHole(_))

| (Keyword(u, _, _), Keyword(_))

| (FreeVar(u, _, _), FreeVar(_))

| (InvalidText(u, _, _), InvalidText(_)) =>

d1 != d2 ? FillDiff(d2, u) : NoDiff

| (NonEmptyHole(reason1, u1, i1, d1'), NonEmptyHole(reason2, u2, i2, d2')) =>

if (reason1 != reason2 || u1 != u2 || i1 != i2) {

FillDiff(d2, u1);

} else {

switch (diff_dhexp(d1', d2')) {

| NonFillDiff => FillDiff(d2, u1)

| diff => diff

};

}

| (

InconsistentBranches(u1, i1, case1),

InconsistentBranches(u2, i2, case2),

) =>

if (u1 != u2 || i1 != i2) {

FillDiff(d2, u1);

} else {

switch (diff_case(case1, case2)) {

| NonFillDiff => FillDiff(d2, u1)

| diff => diff

};

}

/* If different variants, then necessarily a diff.

Check if `d1` is a hole <=> fill diff. */

| _ =>

switch (get_hole_number_of_dhexp(d1)) {

| Some(u) => FillDiff(d2, u)

| None => NonFillDiff

}

};
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}

/* Helper for diffing multiple subexpressions:

- If no children diff, then no diff.

- Else if multiple children diff, then current node is diff root

(non-fill-diff).

- Else carry through child's diff. */

and diff_children = (ds1: list(DHExp.t), ds2: list(DHExp.t)): t => {

let diffs =

List.map2(diff_dhexp, ds1, ds2)

|> List.filter((diff: t) =>

switch (diff) {

| NoDiff => false

| FillDiff(_)

| NonFillDiff => true

}

);

switch (diffs) {

| [] => NoDiff

| [diff] => diff

| _diffs => NonFillDiff

};

}

/* This function is for the special case of two children. */

and diff_children2 =

(d11: DHExp.t, d12: DHExp.t, d21: DHExp.t, d22: DHExp.t): t =>

switch (diff_dhexp(d11, d21), diff_dhexp(d12, d22)) {

| (NoDiff, NoDiff) => NoDiff

| (FillDiff(_) as diff, NoDiff)

| (NoDiff, FillDiff(_) as diff) => diff

| _ => NonFillDiff

}

/* Helper for diffing case expressions. If any of the patterns

or the `i`s are different, then the case is the root. Otherwise,

apply `diff_children` to the scrut and rule bodies. */

and diff_case =

(

Case(scrut1, rules1, i1): DHExp.case,

Case(scrut2, rules2, i2): DHExp.case,

)

: t => {

let dp_of_rule = (Rule(dp, _): DHExp.rule): DHPat.t => dp;

let d_of_rule = (Rule(_, d): DHExp.rule): DHExp.t => d;

if (i1 != i2

|| rules1

|> List.map(dp_of_rule) != (rules2 |> List.map(dp_of_rule))) {

NonFillDiff;

} else {

diff_children(

[scrut1, ...rules1 |> List.map(d_of_rule)],

[scrut2, ...rules2 |> List.map(d_of_rule)],

);
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};

};

Listing 38: DiffDHExp.re

/* Model.re */

/* (In `Model.update_program`) */

/* Decide between regular evaluation or fill-and-resume. */

let old_result = Program.get_result(old_program);

let new_result =

switch (FillAndResume.is_fill_viable(old_program, new_program)) {

| None => new_program |> Program.get_result

| Some((e, u)) => old_result |> FillAndResume.fill(e, u)

};

/* (End `Model.update_program`) */

Listing 39: Model.re

C.2.7 Evaluation state

/* EvalState.rei */

/* Evaluation state. Used to store information that is threaded

throughout calls to `Evaluator.evaluate`, such as the environment

id generator (so that all environment ID's are unique) and

evaluation statistics.

All of these functions return the update `EvalState.t` as the first

parameter.

*/

[@deriving sexp]

type t;

/* Constructor used when beginning evaluation */

let initial: t;

/* Emits a new and unique `EvalEnvId.t`. */

let next_evalenvid: t => (t, EvalEnvId.t);

/* Getter for statistics */

let get_stats: t => EvalStats.t;

/* Update number of evaluation steps in statistics. */
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let inc_steps: t => t;

Listing 40: EvalState.rei

/* EvalState.re */

[@deriving sexp]

type t = (EvalEnvId.t, EvalStats.t);

/* `EvalEnvId.empty` is a special value used for the empty

environment at the beginning of evaluation or when resuming

evaluation (fill and resume). */

let initial = (EvalEnvId.empty + 1, EvalStats.initial);

let next_evalenvid = ((ei, stats): t): (t, EvalEnvId.t) => (

(ei + 1, stats),

ei,

);

let inc_steps = ((ei, stats): t): t => (ei, stats |> EvalStats.inc_steps);

let get_stats = ((_, stats): t): EvalStats.t => stats;

Listing 41: EvalState.re

/* EvalStats.rei */

/* Evaluation state. Used to store information that is threaded

throughout calls to `Evaluator.evaluate`, such as the environment

id generator (so that all environment ID's are unique) and

evaluation statistics.

All of these functions return the update `EvalState.t` as the first

parameter.

*/

[@deriving sexp]

type t;

/* Constructor used when beginning evaluation */

let initial: t;

/* Emits a new and unique `EvalEnvId.t`. */

let next_evalenvid: t => (t, EvalEnvId.t);

/* Getter for statistics */

let get_stats: t => EvalStats.t;
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/* Update number of evaluation steps in statistics. */

let inc_steps: t => t;

Listing 42: EvalStats.rei

/* EvalStats.re */

open Sexplib.Std;

/* Current implementation: store number of evaluation steps. */

[@deriving sexp]

type t = int;

let initial = 0;

let inc_steps = (steps: t): t => steps + 1;

let get_steps = (steps: t): int => steps;

Listing 43: EvalStats.re
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