THE COOPER UNION
FOR THE ADVANCEMENT OF SCIENCE AND ART
ALBERT NERKEN SCHOOL OF ENGINEERING

A HYBRID APPROACH FOR IMAGE
VECTORIZATION FOR
SEMI-GEOMETRIC IMAGES

Jonathan Lam, Derek Lee, Victor Zhang

ECE396 Final Report
Professor Sam Keene
Spring 2022

Contents

I —Abstractl

[2__Introductionl

13 Background|

3.1 Raster Graphics|

3.2 Vector Graphics|. oo

13.3 Scalable Vector Graphics File Format|

4.1 Tracing Methods for Vectorization|

4.2 Machine Learning Approaches to Vectorization|

4.3 Sampling Methods for Vectorization|

4.4 Vector Image Optimization|

[5 Proposed Method|

b.3 Improving Edges in the Mesh|

b.3.1 Sampling Strong Edges|

5.3.2 Unifying Edges with Potrace]

5.4 Sampling Points Around Perimeter|

9.5 Mesh Optimization|

9.6 Triangle Mesh Coloring|

11
12
13

P.7 Writing to SVG|.o

[6_Results|

[T _Future Work]

7.1 Experiments with the Pipeline|

[7.1.1 Order with Pipeline Components|

[7.1.2 Hyperparameter Search|

7.2 Alternative Methods to Strengthen Edges|

7.3 Curve Simplification|

7.4 Image Size Sensitivity]

7.5 Hybrid Method Runtime Pertormance|

7.6 Mesh Coloring Methods|

7.7 Using the Output of the Pipelinel

|[7.7.1 Architectural Design Process|

|[7.7.2 Machine Learning Preprocessing|

[7.8 Mathematical Model of Pipelinef

7.9 Improved Evaluation Metrics|

[7.9.1 Controlling for Features of the Vectorized Images|

17.9.2 Evaluation Metrics for Visual Perception|

B_Conclusionl

24

26
26
26
26
26
27
27
27
27
28
28
28
28
28
29
29
29

30

31

34

1 Abstract

Image vectorization is the process of converting a raster (pixel-based) image to
a vector (shape-based) image. While raster images are the dominant mode of
image representation, vector graphics may be more efficient for highly geometric
images, such as logos, fonts, and maps. Edge tracing methods for vectorization
produce clean edges but assume a color-thresholded image. Sampling-based
methods work well over color gradients but produce a mesh that may not be
well-aligned with edges. We aim to create a hybrid pipeline that combines
the benefits of these two methods: performing well over color gradients and
producing clean edges. We demonstrate that our method tends to perform
better in terms of accuracy (MSE) and visual presentation of edges than the

base methods, at the cost of some efficiency of representation.

2 Introduction

2.1 Project Overview

Our project aims to provide an end-to-end image vectorization tool for a wide
class of image types. Image vectorization is the process of generating a wvector
(shape-based) image that is faithful to the input raster (pixel-based) image.

Highly geometric images may benefit greatly from a vector image represen-
tation. For example, image vectorization for maps [3] or charts [9] have been
very successful. Potrace [18] works well for shapes with well-defined geometric
patches. More modern machine learning methods such as Im2Vec [17] can also
identify simple geometric shapes.

We wish to study a more general class of raster images: those that remain
highly-geometric (so that a vector image representation is useful), but with
no other strong assumptions. For example, Potrace requires that an image is
binary-thresholded or otherwise color-thresholded, and does not provide a great
representation of gradient patches. The classical edge tracing methods for maps
or charts also assume a color-thresholded image and may use a knowledge-based
system [12] to improve the results. Im2Vec makes simplifying assumptions about
the number of shapes it is attempting to identify.

A possible use case for our project is with architectural photographs. Ar-
chitecture tends to be very geometric; however, complexity is introduced by
many factors such as textures, coloring and lighting, fine details, and image
quality, that will complicate existing methods of image vectorization. It will be
useful to extract a vector representation of an architectural work from a pho-
tograph, for further use in machine learning or perhaps as a reference model in
computer-aided design.

Due to the complexity of architectural images, we are not too concerned

about some information loss; the goal of this project is to explore some heuristic

methods to blindly (i.e., without a knowledge-based system) produce a reason-
able representation of a highly-geometric image. Several metrics will be used to
quantify the performance of our vectorization method compared to the Potrace

and blue-noise sampling methods.

2.2 Overview of Methods

Multiple methods have been considered for this project, including traditional
edge tracing, machine learning, and blue-noise sampling (followed by triangula-
tion). The result of our experimentation is a method that augments a sampling-
based method with additional information about “strong” edges. This gives us
a hybrid method that combines the benefits of sampling methods (robustness

to color gradients) and edge tracing (robustness of edges).

2.3 Potential Applications

Our project can potentially be applied to the architecture design process. We
envision that an architect may take a photo of an existing architectural design,
use our project to process that image, and use the vector-based output to easily
edit the image. Alternatively, the input image may be exported to a line-drawing
representation generated from the SVG output.

Another potential use case is for machine learning. In computer vision,
image data used as input is traditionally in raster format — there is little research
performed on how well deep learning performs on vector-based image inputs.
We imagine that due to the efficiency of its representation, especially for highly-
geometric shapes, we may be able to have more concise information in the deep
learning model. This representation may be used for new types of vector image-
based ML models, which are currently not widely used. Alternatively, existing

machine-learning methods may be used after rasterizing the output.

3 Background

3.1 Raster Graphics

Raster images are the matrix representation of an image. A raster image is
conceptually a matrix of pixels, or a bitmap. Each pixel may contain multi-
ple data points representing channels (colors). Historically, bitmaps have been
the dominant representation for images due to their conceptual simplicity and
the array-based display (and framebuffer) of modern screen technology. Many
image-based algorithms depend on the grid-like representation of raster images,
such as image compression, parallelized image processing algorithms, and image-
based machine learning algorithms. As a result, standards for raster images tend

to have wider support than vector graphics.

3.2 Vector Graphics

Vector images use a shape-based parameterization of an image. One of the
immediate benefits is an efficient representation for purely geometric images, and
the efficient and infinite scaling of geometric objects. In order to display a vector
image onto a pixel-based screen, the vector image first has to be rasterized,
or rendered. Vector graphics are especially useful for web graphics and other
highly geometric designs, such as logos, maps, computer-aided design (CAD),
and typography. However, vector-based designs tend to be more inefficient for

arbitrary image data.

3.3 Scalable Vector Graphics File Format

Scalable Vector Graphics, or SVG, is a standard [16] for vector graphics that uses
the XML text format. All elements are represented using combinations of seven

geometric shapes: Path, Rectangle, Circle, Ellipse, Line, Polyline, and Polygon.

(b) Composition VII by Wassily
Kandinsky

Image 1 | Image 2 | Content Loss
Fig. 1a | [Fig. 1d | 132352.05
Fig. 1a) | |[Fig. 1b 190958.28
Fig. 10| | [Fig. 1d | 190266.86

(d) Sample content loss for example
images

(c) Generated image produced with
style transfer

Figure 1: Content loss example

Since it is a textual format, it can be easily examined and manipulated by
computers or by humans. The SVG standard is stable and supported by many
modern applications, including most PDF viewers and web browsers. Due to
its wide support as a vector image format, we will be using the SVG format as

the default format for our vector graphics.

3.4 Content Loss

To evaluate our results, we want an evaluation metric to quantify the accuracy
relative to the original image in terms of visual similarity. Content loss [5] was

introduced as a loss function to train generative adversarial networks for style

https://commons.wikimedia.org/wiki/File:YellowLabradorLooking_new.jpg

transfer, and serves our purpose.

The authors define the content loss between two images as the Euclidean
distance between the high-level outputs of a trained classifier. This stems from
a theory about deep convolutional neural networks: the early layers in a classifier
are used to extract low-level features, such as edges, while the later layers of the
classifier use the low-level features to create high-level features, such as an arm
or a leg.

We tested the content loss metric on three images related to style transferﬂ

Fig. 1c]is generated using the content from and the style from

The content loss between [F'ig. 1aland |Fig. 1c|should be the lowest, compared to

the content loss between [Fig. 1a] and [Fig. 1b] because the two images have the

same content but with different style. As seen in [Fig. 1dl we get the expected

results.

IThe sample images shown come from https://www.tensorflow.org/tutorials/
generative/style_transfer.

https://www.tensorflow.org/tutorials/generative/style_transfer
https://www.tensorflow.org/tutorials/generative/style_transfer

4 Related Work

4.1 Tracing Methods for Vectorization

One method of image vectorization is referred to as tracing. The intuition
behind this is that a raster image can be thought of as a collection of adjacent
image patches, and we can vectorize an image by detecting edges of shapes.

A noteworthy implementation of image tracing is the Potrace algorithm [18§].
As the name suggests, Potrace first attempts to convert a raster image into a
series of polygonal paths via edge detection and straight-line detection, and then
attempts to simplify (optimize) polygons by reducing path cardinalities and
introducing Bezier curves. It employs many useful heuristics to improve image
quality, such as removing speckles smaller than a given “turd size,” detecting and
smoothing corners, redundancy coding in the target format, scaling and rotating
a small set of parameterized curves, and data quantization. An illustration of
the stages of the Potrace algorithm is shown in The implementation of
Potrace is open-source, and the program is highly configurable via command-line
options.

This interpretation of vectorization is useful for simple raster images that
are indeed a collection of adjacent shapes, such as map data, floor charts, ty-
pography, or charts. For such images, the Potrace algorithm is both reliable
and efficient. We use Potrace in our implementation to address some of the
limitations in our method.

One of the drawbacks of tracing is that we can only trace edges on a binary
thresholded image; if there aren’t clearly defined edges, or if there are image
gradients (as is often the case), it doesn’t represent an image as well. Tracing
can be applied to color images by thresholding the image by color or brightness
level, and producing vector images for each thresholded layer, but this may

seem choppy and low-quality. Tracing also does not recognize non-contiguous

(a) (b)

(©) (d)

(e)

Figure 2: An illustration of the Potrace [18] vectorization process

10

I path vector le)

raster input latenitcodes output Ly rasterized output

Eeumsmaananaunas Path Decoder Rasterizer Eesmanasnanaunan
g ol fal H L s
T latent code Lo mmmmmmE
EEE#:#EE RNN -I—.—l Path Decoder |—|E—| Rasterizer Id—:b Compositing "E—E#E#F H
P iRaR-aaa! EIRaRa!
HePer L HreH
1 E ;' H -I—.—l Path Decoder |—.—| Rasterizer L]—:b E i ‘; i E

Path Decoder

o
(circular 1D CNN) 0

(circular 1D CNN)
adaptive decoder X
resampler

sampled deformed

control points control points

sampling
=

latent code

decoded Bézier path

Figure 3: Architecture overview for Im2Vec from [17]

shapes (e.g., simple shapes that intersect other shapes), which can allow for
more aggressive optimization or semantic segmentation (which may be achieved
by specialized neural network approaches such as [11]).

Most research on tracing predates other methods, but there have been some
recent innovations. For example, Yang et al. [20] implemented beziregion (bezier
region) approximation for clipart, which directly optimizes beziregions rather
than going through intermediate polygons, and there have been several methods

targeted at vectorizing line drawings [1} |6} [13].

4.2 Machine Learning Approaches to Vectorization

There have been several recent neural-network based approaches to image vec-
torization. One notable example is Im2Vec [17], a deep neural-network to vec-
torize images without supervision.

We explored using this model as part of our approach, but it appears that
the authors hard-coded the number of shapes in the input raster image, along
with the colors of each shape. We are looking to apply our model to more
generic images, which will likely not be as well-defined as the emojis used in
their experiments.

Neural-network-based vectorization like Im2Vec appears to be mostly limited

11

to simple images for the time being, but they can achieve some useful effects
that may be difficult using conventional algorithms. For example, Kim et al. [11]
achieves “semantic segmentation,” which is a complex task that will be difficult

to approximate using classical deterministic heuristics.

4.3 Sampling Methods for Vectorization

Sampling methods tackle the vectorization problem by stochastically approx-
imating regions of the vector image. This allows us to achieve a reasonable
performance and accuracy. Sampling methods may approximate edges less ac-
curately than edge tracing, but they can overcome some of tracing’s limitations,
namely being limited to binary or multi-level thresholding. Like tracing meth-
ods, it extends fairly well to more complicated images, unlike machine learning
methods, which appear to be more limited to simple images.

An example procedure for image vectorization through sampling is shown in
Zhao, Feng, and Zhou [21]. The sampling method for vectorization is comprised
of three steps. The image is first convolved with a Sobel differential operator to
generate an importance matriz. Importance corresponds to spatial gradients in
the original image; larger gradients may indicate regions with more detail. We
then apply blue-noise sampling to the image using the importance matrix. Blue-
noise sampling [19] is a general technique to non-uniformly sample an image,
such that areas of higher importance are sampled at a greater density. Thus, the
sampled points are more tightly clustered around more detailed regions, giving
a better representation of the image. The sampled points are then triangulated
using a Delaunay triangulation, which is then exported to a vector image format
such as SVG.

A similar work is vectorization of cartoon images via shape subdivision [23].

This triangulates the input image, and then performs heuristics to merge trian-

12

gles to mitigate artifacts from triangulation. We take a similar approach, but
both attempt to optimize triangles (via a quadric error metric) and augment

the triangulation with additional information about “strong” edges.

4.4 Vector Image Optimization

Several methods for optimizing a polygonal path (i.e., a closed polyline) into a
smaller polyline, and by expressing curved sequences of edges as a single Bezier
curve, are explored in the Potrace algorithm [18]. However, this only deals
with simplifying curves, while maintaining the overall topology. The sampling
method generates a triangulated mesh rather than a sequence of closed paths;
in this method, the optimization scheme may look different and may change the
overall topology. For example, we do not have any polylines to curve-optimize
unless some edges are removed to form non-triangular polygonal patches; it is
then a matter of which edges can be removed while retaining fidelity to the
original image.

Garland and Heckbert [7] proposed using the Quadric Error Metric (QEM)
for mesh surface simplification. QEM is used for measurement of error that
evaluates the distance of a point in mesh from its ideal position. The method
computes the QEM for all valid pairs of points and then finds and collapses the
pairs of least cost. The method works for 3D meshes and preserves the primary
features of the shape. Since our algorithm first samples in 2D space based on
importance, the sampled point cloud needs to be extended to 3D using color
information. The resulting 3D points should be less dense but still preserve the
sampling feature since decimated pairs of points in areas of high importance

would result in higher loss under the QEM.

13

5 Proposed Method

We propose a hybrid method based on both the blue-noise sampling [21] and
Potrace [18] algorithms. In this section we describe the major components of
the image pipeline.

Our implementation is a mix of Python and C++|ﬂ The OpenCV library
|2] was used to handle image processing tasks; the numpy library [14] was widely
used for generic numeric operations; the open3d library [22] was used for blue-

noise sampling; and the cairo library [8] was used for exporting to SVG.

5.1 Sampling

The sampling process is based on Zhao, Feng, and Zhou [21]. The input image
is a regular raster image, such as The first step is to apply the gradient
operator on the image to get the importance matrix, shown in [Fig. 5| This in-
volves convolving the image with four 3 x 3 Sobel filters (horizontal, vertical, and
two diagonals) and finding the elementwise maximum along the four outputs to
determine the magnitude of the gradient, which is interpreted as the local in-
formation content or “importance” of the area surrounding a given pixel. Next,
the importance matrix is thresholded so that only points of high importance are
retained, shown in This is essentially a high-pass filter; low-frequency
components of the image are lost. The intuition is that low-frequency elements
can be represented with uniformly-colored shapes without much information
loss.

The code used for sampling is a C++ package provided by Ostromoukhov,
Donohue, and Jodoin [15]. This method is very fast and deterministic, using
Penrose tilings and Fibonacci numbers to sample using the importance map.

Now we perform the sampling to obtain The sampling density at a

2The GitHub repository is https://github.com/Victoooooor/Vectorize—Arch.

14

https://github.com/Victoooooor/Vectorize-Arch

Figure 4: Original image

pixel is a function of the importance of that pixel; a higher importance leads
to a higher sampling frequency. This is known as “blue-noise” sampling, and
allows us to focus more detail on regions of higher information content. Af-

ter sampling, the image is converted to a triangular mesh by performing the

Delaunay triangulation, as shown in

5.2 Generating Multi-Thresholded Potrace Curves

The Potrace command line utility does not provide the ability to perform a
multiple-color thresholded scan. This multi-color scan is available in popular
software such as Inkscape, but is not available as an accessible command-line
tooﬂ As a result, we created our own pipeline for automatically generating a
multi-thresholded Potrace vectorization.

Since Potrace requires binary-thresholded images, we threshold the image
into its major color groups using the OpenCV implementation of a standard

k-means color quantization algorithm. We then run each of the k color groups

3To the authors’ best knowledge.

15

Wt [i
e =

i

Figure 5: Importance function applied to the image

Figure 6: Thresholded points

16

Figure 7: Sampled points

Figure 8: Triangulated image

17

through the Potrace algorithm separately to generate k SVG images, and merge

(concatenate) the results into a single SVG.

5.3 Improving Edges in the Mesh

Blue-noise sampling attempts to represent areas of higher detail with a higher
sampling density. The greatest issue with the blue-noise sampling is that it does
not represent edges well. Ideally, many of the edges in the image will align with
edges of the mesh. We can attempt to manually adjust the sampled points to

lie along edges. The following two heuristics are used to try to improve edges.

5.3.1 Sampling Strong Edges

We may attempt to augment edges by simply increasing the number of samples
along the edge. To do this, we identify the set of points that form “strong
edges.” This may come from an edge detection algorithm; in our case, we choose
points which have an importance (gradient) above an arbitrary threshold. Then
we randomly sample from this set with some small probability, and use these
sampled points to augment those from blue-noise sampling. We note that this
adds points and increases the file size. This increase in points is proportional

to the number of pixels that lie on “strong edges.”

5.3.2 Unifying Edges with Potrace

Another method to improve edges is to move sampled points that lie close
to an edge to that edge. We use a custom heuristic to combine our sampled
points with the Bézier curves that are generated by Potrace. We first rasterize
the Bézier curves in order to be able to compare the curves with our sampled
points. Next, we replace our sampled points with the closest point on a Bézier

curve if the closest point is within a certain distance of the sampled point.

18

If there are multiple points on the Bézier curve within the same distance, we
use all of the points. This distance is determined by the attraction distance e,
which represents a square centered on a point on the Bézier curve. The square’s
corners are € pixels up/down and left/right of that point. For example, one
corner would be at (4€, —¢) relative to the point on the curve. If the sampled
point is within this square, the point on the Bézier curve is a valid candidate for
replacement. We check all of the Bézier curves generated by Potrace, and for
each sampled point, we replace it with the closest point across all of the Bézier
curves, assuming a closest point exists.

For our implementation of this algorithm, we first preprocess the sampled
points in order to efficiently find all valid sampled points that are within the
given distance (determined by €). We accomplish this by creating a 2D matrix
that is the same size as our image, where cell; ; represents all sampled points
within the given distance. We iterate through each sampled point, and insert
that sampled point into all indices within a square centered at that sampled

point.

5.4 Sampling Points Around Perimeter

In order for the triangulated mesh to cover the whole image, we need to add
additional points around the perimeter of the image before triangulation. The
current implementation uniformly samples points around the perimeter. While
this does not guarantee that every pixel is part of the mesh, it causes most of

the pixels to be covered.

5.5 Mesh Optimization

To increase the efficiency of the representation, we wish to reduce the number

of points from the sampling without greatly reducing accuracy. To do this,

19

we decimate points following the method by Garland and Heckbert |7], which
decimates points in such a way to optimize the quadric error metric (QEM).
To transform the 2D sampled point cloud to 3D, we use the color information
at the sampled points as the third dimension. The resulting 3D point cloud is
then simplified using the QEM decimation method implemented by the open3d
library [22].

5.6 Triangle Mesh Coloring

We experiment with three methods for determining the color of a mesh triangle.
The first method takes the mean of the RGB values at the three points of the
triangle. The second method randomly samples a set number of integer points
inside of the triangle and takes the mean of the RGB values of those points.
The third method takes the mean of the RGB values at every integer point in
the triangle. We note that the third method approximates the triangle, so it
may sample integer points outside of the triangle. In addition, the third method
utilizes the first method for small triangles, where the number of integer points
inside the triangle is less than three. We currently use the second method,
which randomly samples points inside of the triangle. This method has good

performance and gives good color estimates for the triangles.

5.7 Writing to SVG

The pycairo and cairosvg libraries are used to export the triangulated repre-
sentation to SVG and PNG files. The PNG file is a rendered (rasterized) version

of the SVG image, used for content loss and MSE metrics.

20

5.8 Evaluation Metrics

We evaluate based on several metrics. A couple of our metrics are familiar: file
size and mean-square error (MSE). We also implement a custom content loss
metric based on Dumoulin, Shlens, and Kudlur [5]. Similar to the methodology
used by the authors, we use a pre-trained VGG-19 and strip off the convs and
fully-connected blocks. We note that although the authors used a VGG-16, we
use a VGG-19, similar to Huang and Belongie [10]. In order to get the content
loss between two images, we take the Euclidean distance between the outputs

of the stripped VGG-19.

21

5.9 Overview of Proposed Model

Name

Default Value

Description

Importance Scalar

100.0

A positive scalar used at the stage
of importance sampling, the impor-
tance matrix is scaled by this param-
eter. A higher value results in higher
sampling density.

Decimation Scalar

10

A constant larger than 1, used to
calculate the expected number of
points for QEM mesh simplification.
The expected number of points is
calculated as the number of sam-
pled points divided by the decima-
tion scalar. A higher value results in
stronger point decimation.

Potrace Scans

A positive integer, the number of
scans of different color threshold cho-
sen by k-means clustering. Same
as number of colors in the resulting
SVG.

Attraction Distance

15

A positive integer, the maximum dis-
tance (L°°) between sampled points
and curve generated by Potrace for
the point to tangency point.

Edge Density

0.01

A float in the range (0,1), the prob-
ability of a point on an edge to be
chosen. A higher value results in a
higher point density for an edge.

Table 1: List of hyper-parameters

22

Figure 9: Architecture diagram

23

6 Results

As seen by Potrace produces images that are almost always smaller
than our hybrid method. Merging the blue-noise sampling points with Potrace
usually significantly increases the file size, although in rare cases, such as with
simple images (e.g. , this can reduce the file size.

As seen by Potrace almost always performs better than our hybrid
method, according to the content loss metric. However, it is important to note
that content loss may not be the best metric for measuring the accuracy of the
vectorized image relative to the original raster image. For example, as seen by
the Potrace image does not look similar to the original image at all, yet
its content loss is lower than both the BNS method and our hybrid method.

As seen by our hybrid method consistently performs the best (with
the exception of a single experiment), according to the MSE metric. Our hybrid
method likely performs better than the BNS method because our hybrid method
typically has significantly more points. Additionally, our hybrid method likely
performs better than Potrace because it is able to capture color more effectively.
Potrace is restricted to a predetermined number of unique colors (we use four
colors in our experiments), while our method can use as many unique colors as
possible.

On a more qualitative measure, shows that our hybrid method sig-
nificantly improves the edges in our final method. The BNS method captures

the colors, but the edges are unrecognizable.

24

Image | BNS | Hybrid | Potrace

1 367 485 267
2 203 196 106
3 126 405 399
4 208 2890 1596
) 696 4270 5879
6 358 1369 702
7 299 5723 1725
8 89 T 23
9 205 327 70

Table 2: File size (kB) by method

Image | BNS | Hybrid | Potrace
1 110 108 84
2 84 84 62
3 75 68 42
4 141 98 89
5 125 89 90
6 128 105 86
7 116 66 47
8 67 71 60
9 81 71 99

Table 3: Content loss (x10%) by method

Image BNS | Hybrid | Potrace
63.02 | 61.75 88.85
45.73 | 40.87 67.10
26.29 | 19.11 73.03
75.35 | 47.76 92.25
86.29 | 77.17 88.86
69.59 | 62.58 87.65
59.63 | 37.03 77.63

50.86 56.15 100.04
79.21 | 60.41 100.76

—_

© 00~ O U Wi

Table 4: MSE (rounded to nearest hundredth) by method

25

7 Future Work

7.1 Experiments with the Pipeline
7.1.1 Order with Pipeline Components

There is a large design space for our the model. While the plain BNS method
is relatively simple (perform importance map, sample, and triangulate), our
method involves many more components intended to improve the performance
of edges, and decimates points to achieve some improvement in representational
efficiency. Transposing or moving certain components of the pipeline (e.g., mov-
ing the QEM decimation step to after merging with Potrace) may result in

improved results. This requires a large number of additional experiments.

7.1.2 Hyperparameter Search

In addition to moving large components around, performing an exhaustive hy-
perparameter grid search may be useful to determine which parameters generate

the best results.

7.2 Alternative Methods to Strengthen Edges

Currently, two heuristic methods are used to strengthen edges. There is a large
design space for both of these methods.

The current algorithm to merge points with Potrace, as described in
is fairly simple. It is a quadratic (O(N?)) algorithm, and thus fairly
slow. Also, it uses a simple L*° distance metric rather than a Euclidean dis-
tance, out of simplicity. There may be a better algorithm from computational
geometry to perform the merging task.

Points are randomly sampled from a set of “strong edge points,” which

are points for which the importance (gradient) is above a certain threshold.

26

Alternatively, points may be sampled from edges generated from another edge

detection method, such as the Canny edge detection algorithm [4].

7.3 Curve Simplification

The result of the proposed algorithm is a triangulated mesh. While this is
a simple representation and easily generated using the Delaunay triangulation
algorithm, it is not especially visually appealing, especially when groups of edges
may be joined together into Bezier curves.

It may be beneficial to perform curve optimizations to improve visual output
similar to Selinger [18]. Yang et al. [20] works directly with beziregions, although

this may be difficult to integrate into our pipeline.

7.4 Image Size Sensitivity

Certain aspects of our pipeline are sensitive to file size, such as the importance
scaling factor, which affects the density of sampling. It may be beneficial to

ensure that all parameters are image-size-invariant.

7.5 Hybrid Method Runtime Performance

Runtime or algorithmic performance was not a major concern for this work, as
it was a secondary goal to improving the quality of vectorization. However, it
is a very practical concern, and should be considered in the future. Some of the
pipeline may be amenable to parallelization, such as the sampling and Potrace

multi-scan passes.

7.6 Mesh Coloring Methods

We briefly experimented with three methods for coloring triangles in the mesh.

However, further experiments would be useful in determining which method is

27

most beneficial (also taking into account runtime performance).

7.7 Using the Output of the Pipeline
7.7.1 Architectural Design Process

The original intention for our model was to aid in the architectural design pro-
cess. It will be useful for architects to generate line drawings or CAD models.
Our model does not currently do this, but such a representation may benefit

from the mesh outputted by our model.

7.7.2 Machine Learning Preprocessing

Most, if not all, image machine learning models take raster images as input. In
order to use our proposed method as input for a machine learning model, the
output must be rasterized, or a vector-based machine learning model must be

developed. This lies outside the scope of our work.

7.7.3 Art Generation

The outputted vectorized images have a distinct “stained glass” texture that
may be desirable in an art context. A number of peers have said that the

output “looks cool” and this may be desirable simply for visual effect.

7.8 Mathematical Model of Pipeline

The nature of this work is highly heuristic and emipirical; it would be pleasing
to have a mathematical model behind the enhancements to estimate the gains

in vectorization and to check the empirical results against.

28

7.9 Improved Evaluation Metrics
7.9.1 Controlling for Features of the Vectorized Images

The current evaluation metrics are very basic. Moreover, when comparing im-
ages in an experiment, we do not attempt to control features of the output
images (e.g., number of mesh points, filesize, etc.) but instead only control the
model parameters. In other words, the current comparison may be less fair than

if the outputted images of BNS and our hybrid method had the same filesize.

7.9.2 Evaluation Metrics for Visual Perception

Much of the motivation behind this work is highly related to visual perception:
Potrace appears to do worse for gradients, and BNS tends to produce much
worse edges. However, none of the evaluation metrics directly test either of
these visual-based perceptions.

We use content loss as an attempt to measure overall semantic fidelity of the
vectorized image, but this may not be the best metric. For example, in exper-
iment 8, which contains the gradient, the Potrace output has a lower content
loss despite being much less accurate than the other methods. We hypothesize

that a better metric may be style loss [5].

29

8 Conclusion

We have implemented a basic framework for vectorizing raster images, primarily
based on blue-noise sampling [21] and Potrace [18]. Our proposed framework
involves performing blue-noise sampling on an image, merging sampled points
with the Potrace output, triangulation, and exporting to an SVG file. While
this method currently does not generate a highly efficient representation, it
performs better than BNS and Potrace on some metrics, particularly accuracy.
Our method is able to both handle gradient patches better than Potrace, and
represent edges better than blue-noise sampling. There is much future work

remaining to further tune this model for efficiency.

30

References

1]

[10]

Mikhail Bessmeltsev and Justin Solomon. “Vectorization of line drawings
via polyvector fields”. In: ACM Transactions on Graphics (TOG) 38.1
(2019), pp. 1-12.

Gary Bradski and Adrian Kaehler. “OpenCV”. In: Dr. Dobb’s journal of
software tools 3 (2000), p. 2.

Girija Dharmaraj. Algorithms for automatic vectorization of scanned maps.

Citeseer, 2005.

Lijun Ding and Ardeshir Goshtasby. “On the Canny edge detector”. In:

Pattern recognition 34.3 (2001), pp. 721-725.

Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A Learned

Representation For Artistic Style. 2017. arXiv: |1610.07629 [cs.CV]l

Jean-Dominique Favreau, Florent Lafarge, and Adrien Bousseau. “Fidelity
vs. simplicity: a global approach to line drawing vectorization”. In: ACM

Transactions on Graphics (TOG) 35.4 (2016), pp. 1-10.

Michael Garland and Paul Heckbert. “Surface Simplification Using Quadric
Error Metrics”. In: Proceedings of the ACM SIGGRAPH Conference on

Computer Graphics 1997 (July 1997). DOI: |10.1145/258734 . 258849.

Cairo Graphics. Cairo: A 2D graphics library with support for multiple

output devices, version 1.1. 2006.

Weihua Huang, Chew Lim Tan, and Wee Kheng Leow. “Elliptic arc vec-
torization for 3D pie chart recognition”. In: 2004 International Conference

on Image Processing, 2004. ICIP’0/4. Vol. 5. IEEE. 2004, pp. 2889-2892.

Xun Huang and Serge Belongie. Arbitrary Style Transfer in Real-time with

Adaptive Instance Normalization. 2017. arXiv: [1703.06868 [cs.CV]l

31

https://arxiv.org/abs/1610.07629
https://doi.org/10.1145/258734.258849
https://arxiv.org/abs/1703.06868

[11]

[13]

[14]

[15]

[20]

Byungsoo Kim et al. “Semantic segmentation for line drawing vectoriza-
tion using neural networks”. In: Computer Graphics Forum. Vol. 37. 2.

Wiley Online Library. 2018, pp. 329-338.

Kyong-Ho Lee, Sung-Bae Cho, and Yoon-Chul Choy. “Automated vector-
ization of cartographic maps by a knowledge-based system”. In: Engineer-

ing Applications of Artificial Intelligence 13.2 (2000), pp. 165-178.

Gioacchino Noris et al. “Topology-driven vectorization of clean line draw-

ings”. In: ACM Transactions on Graphics (TOG) 32.1 (2013), pp. 1-11.

Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA,
2006.

Victor Ostromoukhov, Charles Donohue, and Pierre-Marc Jodoin. “Fast
Hierarchical Importance Sampling with Blue Noise Properties”. In: ACM
Transactions on Graphics 23.3 (2004). Proc. SIGGRAPH 2004, pp. 488

495. URL: http://www.iro.umontreal.ca/~ostrom/ImportanceSampling/|

Antoine Quint. “Scalable vector graphics”. In: IEEE MultiMedia 10.3
(2003), pp. 99-102.

Pradyumna Reddy et al. Im2Vec: Synthesizing Vector Graphics without

Vector Supervision. 2021. arXiv: |2102.02798 [cs.CV]l

Peter Selinger. “Potrace: a polygon-based tracing algorithm”. In: Potrace
(online), hitp://potrace.sourceforge.net/potrace.pdf (2009-07-01) 2 (2003).
Dong-Ming Yan et al. “A survey of blue-noise sampling and its appli-
cations”. In: Journal of Computer Science and Technology 30.3 (2015),

pp. 439-452.

Ming Yang et al. “Effective clipart image vectorization through direct
optimization of bezigons”. In: IEEE Transactions on Visualization and

Computer Graphics 22.2 (2015), pp. 1063-1075.

32

http://www.iro.umontreal.ca/~ostrom/ImportanceSampling/
https://arxiv.org/abs/2102.02798

[21] Jiaojiao Zhao, Jie Feng, and Bingfeng Zhou. “Image vectorization using
blue-noise sampling”. In: Imaging and Printing in a Web 2.0 World IV.
Vol. 8664. International Society for Optics and Photonics. 2013, 86640H.

[22] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. “Open3D: A modern li-

brary for 3D data processing”. In: arXiv preprint arXiv:1801.09847 (2018).

[23] Ju Jia Zou and Hong Yan. “Cartoon image vectorization based on shape
subdivision”. In: Proceedings. Computer Graphics International 2001. IEEE.
2001, pp. 225-231.

33

A Appendix

(c) Hybrid image (d) Potrace image

Figure 10: Set of images for experiment 1

34

(b) BNS image

(c) Hybrid image (d) Potrace image

Figure 11: Set of images for experiment 2

(a) Original image (b) BNS image

(c) Hybrid image (d) Potrace image

Figure 12: Set of images for experiment 3

35

(a) Original image (b) BNS image

(c) Hybrid image (d) Potrace image

Figure 13: Set of images for experiment 4

36

(¢) Hybrid image (d) Potrace image

Figure 14: Set of images for experiment 5

(c¢) Hybrid image (d) Potrace image

Figure 15: Set of images for experiment 6

37

(a) Original image (b) BNS image

(c) Hybrid image (d) Potrace image

Figure 16: Set of images for experiment 7

38

N
(a) Original image (b) BNS image

(¢) Hybrid image (d) Potrace image

Figure 17: Set of images for experiment 8

39

(b) BNS image

(c) Hybrid image (d) Potrace image

Figure 18: Set of images for experiment 9

40

	Abstract
	Introduction
	Project Overview
	Overview of Methods
	Potential Applications

	Background
	Raster Graphics
	Vector Graphics
	Scalable Vector Graphics File Format
	Content Loss

	Related Work
	Tracing Methods for Vectorization
	Machine Learning Approaches to Vectorization
	Sampling Methods for Vectorization
	Vector Image Optimization

	Proposed Method
	Sampling
	Generating Multi-Thresholded Potrace Curves
	Improving Edges in the Mesh
	Sampling Strong Edges
	Unifying Edges with Potrace

	Sampling Points Around Perimeter
	Mesh Optimization
	Triangle Mesh Coloring
	Writing to SVG
	Evaluation Metrics
	Overview of Proposed Model

	Results
	Future Work
	Experiments with the Pipeline
	Order with Pipeline Components
	Hyperparameter Search

	Alternative Methods to Strengthen Edges
	Curve Simplification
	Image Size Sensitivity
	Hybrid Method Runtime Performance
	Mesh Coloring Methods
	Using the Output of the Pipeline
	Architectural Design Process
	Machine Learning Preprocessing
	Art Generation

	Mathematical Model of Pipeline
	Improved Evaluation Metrics
	Controlling for Features of the Vectorized Images
	Evaluation Metrics for Visual Perception

	Conclusion
	References
	Appendix

