
Buffer overflow analyzer

Jonathan Lam & Daniel Tsarev

December 18, 2021

Contents

1 Abstract 2

2 Motivation 3
2.1 Threat model . 3
2.2 Risk analysis . 4

3 Methods 5
3.1 Review of LLVM and intermediate representations 5

3.1.1 Difficulties in OCaml . 6
3.2 Review of dataflow analysis . 6
3.3 Review of interprocedural analysis 8
3.4 Buffer origin dataflow analysis (BODA) 10

3.4.1 Overview . 10
3.4.2 Definition . 10
3.4.3 Assumptions and caveats 11
3.4.4 Per-function analysis: buffer origin dataflow analysis . . . 12
3.4.5 Interprocedural analysis: CFG tracing (using BODA data) 12

4 Samples and results 14

5 Conclusion 18

6 Resources 18

1

1 Abstract

Buffer overflows are a very well-known form of software vulnerability in which
memory buffer overruns allow attacker to read and/or write memory locations,
in some cases allowing them to inject crash or take control of a system. They
are prevalent in low-level software written in memory-unsafe languages, such as
and especially web servers.

We aim to create a simple static analysis tool that tracks the use of stack-
allocated buffers to known memory-unsafe functions in C source code, such
as the notorious strcpy standard library function. This is achieved using a
dataflow analysis and call graph tracing on the unoptimized LLVM IR generated
using the clang compiler frontend. We develop a novel dataflow analysis method,
called “buffer origin dataflow analysis,” that allows us to track assignments of
buffers. We evaluate this method and describe its shortcomings. A sample
implementation can be found on GitHub at @jlam55555/overflow-analyzer.

2

https://github.com/jlam55555/overflow-analyzer

2 Motivation

The motivation for this project was the first lab1, where the source code of a toy
web server was analyzed and buffer overflows were used to gain unauthorized
access. After doing the lab by hand, we wondered if similar vulnerabilities could
be detected automatically via static analysis, and were motivated to create a
tool that does so.

2.1 Threat model

There are a few closely-related buffer-overflow attacks. Most involve the over-
flowing of fixed-size local buffers, which are stored on the stack. The stack also
contains important information about program control flow that should not be
accessible by the programmer or a user of the program. Some low-level lan-
guages like C are memory-unsafe and do not check bounds or pointer accesses,
and thus overflowing buffers may overwrite these critical locations in memory.
A malicious attacker can craft special messages including their own arbitrary
code (“shellcode”) that are intended to be placed in these buffers, such that
they hijack the control flow of the program. This is especially problematic if
the application is running as a privileged user.

A seminal paper in the literature of buffer overflows is the paper “Smashing
the stack for fun and profit” by Aleph One. Over time, there have been numer-
ous attempts at curbing stack overflows, such as stack canaries, address space
layout randomization (ASLR), no-execute (NX) stack memory pages, memory-
safe languages, better error warnings about unsafe usages. However, as attack-
ers get more creative (e.g., “return-to-libc” attacks to bypass the NX-bit or
heap-spraying to bypass ASLR), there is no complete solution for a C/C++ or
assembly programmer working at the low-level OS or firmware level.

If we consider the STRIDE security model, almost all facets are compromised
due to the low-level nature of the code. The main concerns are:

Tampering The integrity of the compromised program is no longer secure,
along with any data that the program interacts with.

Denial of service Buffer overflows may lead to a program crash.

Elevation of privilege As low-level services tend to be running with special
users with special privileges, an attacker with control of the program now
has access to these privileges.

Since buffer overflows typically attack a low-level system or service, the en-
tire service becomes compromised. In the case of complex services with many
user interactions, such as a webserver, this may compromise the security with
spoofing, information disclosure, and repudiability at the application level.

1MIT 6.858 Lab 1: Buffer overflows

3

https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-858-computer-systems-security-fall-2014/labs/MIT6_858F14_lab1.pdf

2.2 Risk analysis

While buffer overflow attacks are one of the oldest and best known attacks, the
OWASP Foundation classifies the severity as “very high” and the likelihood of
exploit as “high to very high,” and states that “buffer overflow attacks against
both legacy and newly-deveilop applications are still quite common”2.

A quick search for buffer overflow vulnerabilities on the Common Vulner-
abilities and Exposures (CVE) lists 12323 exploits, 765 vulnerabilities in 2021
alone3. Buffer overflow vulnerabilities may cause data leakage or downtime,
which are very expensive. Gartner, a technology consulting company, estimates
that the typical company loses $5,600 per minute of downtime4; IBM estimates
that the average data leak for a U.S company costs $4.24 million in 20215.
Needless to say, buffer overflow attacks are very prevalent, and the damage is
costly.

2https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
3https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow, counted by

number of search results at time of writing
4https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
5https://www.ibm.com/security/data-breach

4

https://owasp.org/www-community/vulnerabilities/Buffer_Overflow
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=buffer+overflow
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
https://www.ibm.com/security/data-breach

3 Methods

Buffer overflow analysis is performed through a dataflow analysis on a LLVM
IR representation of the source code input. Explanations of IRs, LLVM, and
dataflow analysis will be explained in the following sections.

3.1 Review of LLVM and intermediate representations

LLVM is a set of modular libraries used to aid in compiler implementation.
One of it core features is a low-level, consistent, human-readable and easily
programmable intermediate representation (IR). This IR can be thought of
as a modern, high-level, machine-independent assembly language. A number
of compiler front-ends (i.e., the component of a compiler that manages parsing
a program to an abstract syntax tree (AST)) target LLVM, including the C
compiler clang. Our implementation uses clang to generate LLVM code from a
C source file.

Some general compilers terminology may be helpful when referring to the
LLVM IR:

Instruction An atomic statement that models assembly instructions.

Virtual register (VR) An abstract register that is used for storing temporary
values from instructions; can be thought of as a variable in the IR.

Basic block A sequence of instructions that do not involve branching (control
flow).

Control flow graph (CFG) A sequence of basic blocks that models the flow
of control of a program.

Instruction set architecture (ISA) A set of instructions that an abstract
model of a CPU can execute.

Three-address IR/ISA A form of IR where each instruction has an operation
code (opcode), up to two parameter virtual registers, and an optional
destination virtual register.

Load/store IR/ISA An IR/ISA that tends to adhere to the simpler-instruction
model of RISC ISAs. In particular, memory operations (such as load/store)
are explicit and separated from computation.

LLVM is a three-instruction, load-store IR. A program is contained in a
llvm::Module, which stores a collection of global variables and llvm::Functions;
each llvm::Function is a collection of llvm::BasicBlocks; and each llvm::BasicBlock

is a collection of llvm::Instructions.
LLVM also includes the concept of a VR, called llvm::Value, which has

a type (llvm::Type). There is a dual between VRs and instructions; each
instruction in a three-address ISA has a target VR (if it has a target; otherwise
the target value is of type void). As a result, each instruction is identified by

5

its target value, and thus every instruction is a value (i.e., llvm::Instruction
subtypes llvm::Value). It may seem strange in the implementation to be using
instructions as values, but this is due to this equivalence between instructions
and VRs.

3.1.1 Difficulties in OCaml

Our original goal was to implement our analysis program in OCaml, since it is
a program often used in programming languages (PL) theory and has a port of
LLVM. However, we found that the OCaml LLVM package is outdated, so we
switched to the native implementation language, C++.

3.2 Review of dataflow analysis

Dataflow analysis is a principled approach to statically tracking some property
throughout the source code of a program, and forms the basis of many static
analysis approaches. The type of property, i.e. the thing that we want to
analyze, is highly dependent on the type of dataflow analysis.

We may consider zero analysis as an example for minimum understand-
ing. In zero analysis, we track whether a variable is zero at any point in the
program. We list the instructions in a basic block vertically, and list the vari-
ables we want to analyze horizontally, so that we have a table, as shown in
Table 1. We start with an initial analysis of all unreachable (⊥) abstract values.
After each instruction, we update the analysis based on the instruction and
the previous analysis, so that the invariant (property) is preserved – the rule
that determines the next analysis as a function of the previous analysis and the
current instruction is called the transition function.

In the case of zero analysis, we have four abstract values that may determine
the possible analyses of a variable:

L = {⊥, Z,N,>}

where Z means definitely zero, N means definitely non-zero, > is a special value
that means indeterminate (Z or N). ⊥ is a special value that means that this
value has not been analyzed yet, or unreachable, and is useful for simplifying
the analysis.

Zero analysis is defined by the following abstraction function α which defines
the invariant that we are tracking. In this case, if a variable evaluates to zero,
then it is given the abstract value Z; if it evaluates to some non-zero value, then
it is given the abstract value N . (Note that there are also the additional values
⊥ and > when neither of these analysis hold true.)

α(v) =

{
Z if v ⇓ 0

N if v ⇓ n ∧ n 6= 0

The transition function describes the analysis transition after an instruction.
It is defined piecewise on the instruction type. Assume x, y are variables to

6

https://llvm.discourse.group/t/why-kaleidoscope-tutorial-in-ocaml-is-removed/4278

Instruction x y z
⊥ ⊥ ⊥

x← 0 Z ⊥ ⊥
y ← 1 Z N ⊥
z ← y Z N N
x← z + x Z N N
x← y − z > N N

Table 1: Sample zero analysis

analyze, and c is a constant, and our language is composed only of assignments,
additions, and subtractions.

f(x← c, σ) =

{
σ[x 7→ Z], if c = 0

σ[x 7→ N], else

f(x← y, σ) = σ[x 7→ σy]

f(z ← x± c, σ) =

σ[z 7→ σx], if c = 0

σ[z 7→ N], if σx = Z ∧ c 6= 0

σ[z 7→ >], else

f(z ← x± y, σ) =

σ[z 7→ σx], if σy = Z

σ[z 7→ σy], if σx = Z

σ[z 7→ >], else

Hopefully this simple example gives enough intuition into dataflow analysis.
More detailed explanations of some of the terms are given below.

Program point A point in the program’s runtime, i.e., a conceptual state if
the program were paused between two sequential instructions. A dataflow
analysis is defined for each program point, and is identified by the instruc-
tion I that precedes it.

Tracked variable This represents a physical element of the program to ana-
lyze. For example, we can perform the analysis on each variable in the
source code. Tracked variables (or simply “variables”) are denoted v.

Abstract value A member of a lattice that represents some information about
the dataflow analysis. This represents some property of the tracked vari-
ables that we want to track for this analysis. An abstract value is denoted
l, and the set (a lattice) that it is defined on is denoted L.

Abstraction function A function α(v) = σv mapping an tracked variable to
an abstract value. This is the invariant that must be maintained by the
transition function.

7

Analysis information (Referring to an instruction, basic block, or function):
All of the tracked variables and their corresponding abstract values in the
given instruction/basic block/function. Sometimes abbreviated to simply
“analysis.” Denoted using σ. For the abstract value associated with a
single variable v, we can denote this as σv.

Lattice An algebraic structure used to represent a partial ordering on a poten-
tially infinite set. In dataflow analysis, we define the subsumption partial
order v on the set of abstract values L. In this context, we pronounce
the expression L1 v L2 as “L2 is more general than L1”. We can infor-
mally extend this to an analysis on all tracked variables of an analysis, i.e.,
σ1 v σ2 ⇐⇒ ∀v ∈ σ1 ∩ σ2.σ1v v σ2v . A valid transition function must
produce a more general analysis than its input, i.e., σ v f(I, σ). For the
purposes of our analysis, every lattice is a meet- and join-semilattice, which
include the upper-bound > (pronounced “top”) and the lower-bound ⊥
(pronounced “bottom”).

Transition function A function f(I, σv) taking a program point and an anal-
ysis, and returning the updated analysis after the instruction such that
α(v) = f(I, σv); in other words, we can never “narrow” the analysis,
but only “widen” it with additional information that generalizes over all
known states, especially in the case of combining multiple incoming edges
(joining analyses). As before, this can be extended to the entire analysis
σ rather than a single variable.

Join operation A binary function l1∧l2 on a lattice that produces a minimum
upper-bound to l1 and l2 (unique given a join-semilattice). As before, this
can be naturally extended to an analysis σ1 ∧ σ2. The join operation is
used to “join” the outgoing dataflow analyses of all incoming edges to a
basic block, which then forms the initial dataflow analysis for that basic
block.

The dataflow analysis is performed by invoking the transition function at
each program point and joining incoming edges of basic blocks until the pro-
gram reaches a fixpoint (i.e., until no operations change the analysis of the
output program point). This is performed on a per-function basis using a sim-
ple worklist algorithm, described later; the per-function analyses are then used
by the interprocedural analysis, which is described in the next section.

We defer to Chapter 4 of the Program Analysis textbook (linked under Ref-
erences) for an introduction to dataflow analysis.

3.3 Review of interprocedural analysis

We can extend dataflow analysis to multiple functions in multiple ways. One
way is to simply inline all functions and perform a regular dataflow analysis;
however, this method is costly and impossible for (mutually) recursive functions.
This forces us to not inline function calls, but treat the analysis as a series

8

void f(char *d, char *s) {

strcpy(d, s);

}

int main() {

char d1[512], s1[512], d2[1024], d1[1024];

f(d1, s1);

f(d2, s2);

}

Figure 1: Issue with specificity of global dataflow analysis

of links, as a call graph. (Note that this is more complicated than a CFG,
since no branches occur in the middle of a basic block; a function may invoke
another function at any point within the caller, so we need to keep the analysis
information at every program point of the caller).

There is some difficulty if we perform the interprocedural analysis in the same
manner as the dataflow analysis, i.e., if we converge to a fixed point globally
(over all functions). Consider the example shown in Figure 1. If a global fixpoint
were achieved, then the analysis σd of the parameter d would include both d1

and d2, and the analysis σs would be s1 and s2. This analysis is not incorrect;
these are all the possible values that d and s can hold over the course of the
program. However, we might assume that there is an unsafe strcpy due to this,
even when this is not the case. The problem is a matter of specificity – we
assume that all invocations of f share the same context and analysis, and this
is a general issue with dataflow analysis – it is conservative.

As a result, we perform context-sensitive analysis, in which a function’s
analysis is independent of other invocations of the functions by the caller. How-
ever, since this may be non-terminating (in the case of recursion), we limit the
analysis until we reach a fixed point in the functions on the call stack; i.e., the
analysis of a function will generalize any previous analysis of the function from
mutually recursive calls, if any6.

We simplify the analysis by assuming that the transition function for any
function call is the identity function7 – i.e., functions do not affect the analysis in
the current function. Without this simplification, the cached analysis changes
not only as a function of the parameters but also as a function of all of its
contained function calls (who themselves are functions of their parameter set
and internal function calls, and so on). This has two implications: functions
cannot modify the analyses (i.e., reassign) of their parameters that are buffers,
and functions cannot return a buffer type. Luckily, these two operations are not
too common in cases that would affect our analysis (e.g., returned pointers are
usually pointing to heap-allocated buffers).

6We are not sure if this is conventional.
7We are also not sure if this is conventional.

9

char buf[512], **pbuf, *buf2;

pbuf = &((char*)buf);

buf2 = *pbuf;

Figure 2: Importance of storing pointers to buffer origins

We defer to Chapters 8 and 10 of the Program Analysis textbook (linked
under References) for more details on interprocedural analysis, such as a proof
of precision and termination.

3.4 Buffer origin dataflow analysis (BODA)

3.4.1 Overview

Buffer A fixed-size stack-allocated (local variable) array.

Candidate buffer A virtual register that has an array or pointer type.

Buffer origin (Of a candidate buffer) Refers to the set of possible buffers or
parameter candidate buffers that a candidate buffer may be referring to.

Note that when discussing buffer origins, “referring to” is only in the sense
of memory equality (referential semantics), not in terms of the equality of its
contents (value semantics). For example, after performing strcpy(dst,src),
dst’s analysis is not updated.

There are multiple ways to hold a reference to a value. For example, we
want to be able to handle the scenario shown in Figure 2. In this example, we
want buf2 to refer to buf. We also know that pbuf refers to buf, but it is not
equal to buf – instead, we maintain in our analysis that it may be a reference to
buf, denoted as &buf2. Similarly, we want to keep track of all virtual registers
that may refer to a buffer via more levels of indirection, i.e., &&buf2, &&&buf2,
etc. This also works out nicely given that LLVM uses a load/store instruction
set, in which we often have pointers referring to buffers. For example, variable
definitions are implicitly pointers to the value type: the variable declaration
char buf[] defines the virtual register %buf with type [i8]*.

3.4.2 Definition

The abstraction function for the BODA analysis is shown in (1). For a given
candidate buffer b, the BODA analysis returns the set of all possible buffer
origins may be referred to by b.

α(b) = {possible buffer origins of b} (1)

In this case, our lattice structure is the set lattice. For any set lattice, ⊥ = ∅,
> = the set of all buffer origins, and the join operator (∧) is set union.

10

The transition functions for BODA analysis are defined below. (2) describes
the analysis for an array declaration. (3), (4), and (5) address all memory oper-
ations (assignment) in LLVM. LLVM’s getelementptr is more complex than a
simple load, treating it as we treat the load opcode simplifies our analysis. The
final rule, (6), is the catchall; for any non-assignment operator, the transition
function ignores the instruction.

f(%buf = alloca [i8]*, σ) = σ[%buf 7→ {&buf}] (2)

f(store i8* %p1, i8** %p2, σ) = σ[%p2 7→ {&bo : bo ∈ σ%p1}}] (3)

f(%p2 = load i8** %p1, σ) = σ[%p2 7→ {∗bo : bo ∈ σ%p1}}] (4)

f(%p2 = getelementptr i8** %p1, 0, 0, σ) = σ[%p2 7→ {∗bo : bo ∈ σ%p1}}]
(5)

f(%a = op %b, %c, σ) = σ (6)

3.4.3 Assumptions and caveats

Some major assumptions of the dataflow analysis note are listed below.

Limited to fixed-size stack-allocated buffers Only fixed-size buffers are tracked
as possible buffer origins. Pointer variables are not regarded as possible
buffer origins. Pointers allocated via other methods (heap allocation, or
variable-length arrays (VLAs)) cannot be tracked due to requiring run-
time information. Some cases of this may be trackable with the aid of
constant propagation, but that would unnecessarily complicate our imple-
mentation.

No pointer arithmetic In an instruction such as p=b+3, where p is a pointer
and b is a buffer, b is considered a buffer origin of p, even if it is not
exactly the case. Future work may attempt to account for this.

Function calls do not affect dataflow analysis This means that the tran-
sition function for all function call instructions is the identity function.
This has two implications: functions cannot modify the analysis of their
parameters (e.g., a function cannot swap the buffer origins of its parame-
ters), and functions cannot return a buffer. Allowing for this would greatly
complicate the interprocedural analysis, and would require research to
solve efficiently. We feel that omitting this should not detract much from
the analysis, since functions do not often modify what their input buffers
point to, and functions do not usually return pointers to stack-allocated
buffers (returned buffers tend to be heap-allocated).

11

function BodaWorklist(f)
B ← basic blocks in f
mark B0 dirty
Bd ← B[0]
while Bd is not empty do

b← pop from Bd

if b is dirty then
analyze(b)
mark b clean
if b not at fixpoint then

for all bs ∈ B : bs succeeds b do
mark bs dirty
insert bs into Bd

end for
end if

end if
end while

end function

Figure 3: The worklist algorithm for basic blocks in a function

3.4.4 Per-function analysis: buffer origin dataflow analysis

The implementation of the dataflow analysis is fairly standard for a dataflow
analysis, following the worklist algorithm for computing a fixpoint (at the func-
tion level) and using the join operator and transition function to update the
analysis (at the basic-block/instruction level). See Figure 3 for the pseudocode
of the worklist algorithm. This is a generic formulation that can be applied to
any dataflow analysis.

The specifics of the choice of basic block to pop may affect the efficiency of
the worklist algorithm (see Kildall’s algorithm) but that is not the goal here and
was not implemented. In our implementation, Bd is implemented as a simple
LIFO queue.

3.4.5 Interprocedural analysis: CFG tracing (using BODA data)

See Figure 4 for the pseudocode for tracing the call graph. At each function
invocation, each argument buffer is replaced with its potential buffer origins.
This process happens recursively.

The algorithm as stated doesn’t handle (mutual) recursion, which will cause
an infinite loop. One method to achieve convergence (other than limiting re-
cursion depth) is to use a previous analysis of the function on the call stack
as the initial value for an analysis. If there is no change in the analysis of a
particular function invocation, then the recursion stops. In other words, there
is a convergence among the analysis of the functions along the call stack. We
did not finish this in our implementation.

12

https://bike.github.io/posts/kildall.html

function TraceCallGraphRec(f,O)
for all function invocations ig() ∈ f do

pg ← [Oig/O]pg
if g is dangerous then

warn about dangerous usage
else if g is user-defined then

TraceCallGraphRec(g, pg)
end if

end for
end function

function TraceCallGraph(M)
fm ← main function of M
TraceCallGraphRec(fm, {})

end function

Figure 4: Trace call graph algorithm (not accounting for mutual recursion)

13

4 Samples and results

Several sample programs and their generated outputs are shown below. The
outputs shown below are from the current implementation with the -DDEBUG

compile flag turned off; with the flag on, much more information is shown about
the dataflow analysis. We omit this for brevity.

Figure 5 shows the simplest example of buffer tracing: a pointer referencing
a local buffer. In this case, the source buffer in strcpy will always be shorter
than the destination buffer, which is safe if b3 contains a well-formed (null-
terminated) string. However, there is always the chance that this is not the
case, so we warn about strcpy anyways.

Figure 6 shows an example where a pointer’s referenced buffer is indetermi-
nate. Since there is a possible path such that the source buffer is longer than
the destination buffer, we warn about the dangerous usage.

Figure 7 shows an example of interprocedural analysis. Through the function
call, the parameters are replaced with their buffer origins when analyzing the
function call. The call to strcpy is able to determine that it uses an unsafe
combination of source and destination buffers located in the main function.

Figure 8 shows another example of interprocedural analysis, demonstrating
the recursive nature of the call graph tracing. We can track dangerous buffer
usages from arbitrarily deep in the call stack.

Figure 9 illustrates the problem with the context-insensitivity of dataflow
analysis noted in Figure 1. We are able to consider different function invocations
as separate contexts, and thus avoid the false positive that a global dataflow
analysis would flag.

Other noteworthy examples are loops and recursion. Loops (even non-
terminating ones) should converge in the analysis. Analyzing (mutual) recursion
does not terminate in our current implementation. We would also like to include
more debugging information, such as backtrace of dangerous usages and source
file position (line and column) of the declarations of buffer origins, in addition
to the function name.

14

int main() {

char b1[8192], *b2, b3[512];

b2 = b1;

strcpy(b2, b3);

}

(a) Source

[Warning]: unsafe function strcpy()

Possible destinations: main:b1[8192]

Possible sources: main:b3[512]

(b) Output

Figure 5: Sample program: simple buffer tracking

int main() {

char src1[8192], src2[512], *src, dst[512];

if (rand() % 2) {

src = src1;

} else {

src = src2;

}

strcpy(dst, src);

}

(a) Source

[Warning]: unsafe function strcpy()

Possible destinations: main:dst[512]

Possible sources: main:src1[8192] main:src2[512]

[Danger]: potential buffer overflow (source:8192 > destination:512)

(b) Output

Figure 6: Sample program: indeterminate buffer origin

15

void f(char *dst, char *src) {

strcpy(dst, src);

}

int main() {

char b1[512], b2[4096];

f(b1, b2);

}

(a) Source

[Warning]: unsafe function strcpy()

Possible destinations: main:b1[512]

Possible sources: main:b2[4096]

[Danger]: potential buffer overflow (source:4096 > destination:512)

(b) Output

Figure 7: Sample program: buffer tracking through function invocations

void g(char *s) {

char buf[512];

strcpy(buf, s);

}

void f(char *s) {

g(s);

}

int main() {

char str[8192];

f(str);

}

(a) Source

[Warning]: unsafe function strcpy()

Possible destinations: g:buf[512]

Possible sources: main:str[8192]

[Danger]: potential buffer overflow (source:8192 > destination:512)

(b) Output

Figure 8: Sample program: multi-level buffer tracking

16

void f(char *d, char *s) {

strcpy(d, s);

}

int main() {

char b1[512], b2[512], b3[1024], b4[1024];

f(b1, b2);

f(b3, b4);

}

(a) Source

[Warning]: unsafe function strcpy()

Possible destinations: main:b1[512]

Possible sources: main:b2[512]

[Warning]: unsafe function strcpy()

Possible destinations: main:b3[1024]

Possible sources: main:b4[1024]

(b) Output

Figure 9: Sample program: specificity of call graph tracing

17

5 Conclusion

Buffer overflows are a very prevalent software vulnerability in low-level pro-
gramming. We attempt to address common cases of buffer overflows by deep
tracing of stack-allocated buffers throughout functions to well-known danger-
ous functions, using a custom dataflow analysis called buffer origin analysis.
Our analysis successfully covers the given test scenarios, and is conservative in
its analysis (as dataflow analysis tends to be). To achieve greater accuracy,
call-graph tracing is applied for function calls.

This method of dataflow analysis, while applied in BODA to buffers, can be
applied to track any local variable pointers throughout a program. We are not
aware of any use cases other than buffer overflow detection at this time.

Due to a number of strong assumptions made in the analysis, there are a
large number of uncovered scenarios that can be addressed in the future, in
order to address more advanced use cases. Our algorithm may also be improved
by handling recursive cases using the call-stack convergence method described
earlier, as well as by improving logging output to use LLVM debugging info. It
will also be informative to examine our program on more complicated programs
than our artificial test cases, and to examine the implemenatation of existing
static analysis tools and how they handle buffer overflow vulnerabilities.

6 Resources

Program Analysis (Textbook) https://www.cs.cmu.edu/~aldrich/courses/

17-396/program-analysis.pdf

18

https://www.cs.cmu.edu/~aldrich/courses/17-396/program-analysis.pdf
https://www.cs.cmu.edu/~aldrich/courses/17-396/program-analysis.pdf

	Abstract
	Motivation
	Threat model
	Risk analysis

	Methods
	Review of LLVM and intermediate representations
	Difficulties in OCaml

	Review of dataflow analysis
	Review of interprocedural analysis
	Buffer origin dataflow analysis (BODA)
	Overview
	Definition
	Assumptions and caveats
	Per-function analysis: buffer origin dataflow analysis
	Interprocedural analysis: CFG tracing (using BODA data)

	Samples and results
	Conclusion
	Resources

