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1 Introduction

This is for the completion of ECE491: Structure and Implementation of Com-
puter Programs, based on the text of the same name by Abelson and Sussman.
The assignment was to implement an extension of the interpreter presented in
sections 4.1-4.4.

This work extends the implementation presented in section 4.3: “Variations
on a Scheme – Nondeterministic Computing.” The section uses implicit con-
tinuations to implement the amb keyword. This work extends that in two ways
by:

• providing an arbitrary number of continuations, rather than only two (suc-
cess and fail); and

• exposing continuations as first-class objects using the call/cc interface

Additionally, a significant portion of this project was dedicated to exploring
the theory and use cases of continuations, so there will be some backgrounds
and examples of common use cases.

2 Background

Simply due to curiosity, this project became largely exploratory in nature. This
project ultimately aims to answer the question: “What are continuations and
when should we use them?” Thus this background section forms the bulk of
the report and the research effort, despite the original goal to implement a new
feature.

From Matt Might’s blog post Continuations by example: Exceptions, time-
traveling search, generators, threads, and coroutines:

Continuations are the least understood of all control-flow constructs.
This lack of understanding (or awareness) is unfortunate, given that
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continuations permit the programmer to implement powerful lan-
guage features and algorithms, including exceptions, backtracking
search, threads, generators and coroutines.

I think part of the problem with continuations is that they’re always
explained with quasi-metaphysical phrases: “time travel,” “parallel
universes,” “the future of the computation.” I wrote this article
so that my advanced compilers students could piece together how
continuations worked by example.

I wholly agree with this sentiment. There are a dozen different ways to
interpret continuations, and each interpretation lends its own insights. In this
section I will attempt to give a better idea of what continuations are, what they
are capable of, how they are used, and even how they may be implemented –
all this just to get an inkling of what this mysterious control structure is.

2.1 What are continuations?

As Might points out, a common way to describe continuations are that they are
the “future” of an expression. Luckily, Scheme’s syntax is able to provide an
objective way to view the future of an expression: the future of an expression
is the containing expression. This is due to the fact that parameters are fully
evaluated before the function is applied. Consider Figure 1. The result of the
subexpression (* a b) is the addition by c, so we can express its continuation
as a procedure that performs this action: (lambda (val) (+ val c)). The
futures (continuations) for each subexpression are also shown in the figure.

Another way to think about it is that the continuation for any expression
is the (implicit) callback for a given computation. After (* a b) is fully com-
puted, then it should send its result to the lambda function representing its con-
tinuation. This should not feel too strange to those familiar with asynchronous
programming: often the result of an asynchronous computation is passed to a
specified callback or handler function.

Continuations become very useful if the programmer has access to them. For
example, since the (* a b) is an ordinary procedure, we can save this procedure
to a variable and call it like an ordinary function. If the programmer saves the
continuation of that subexpression to a variable cont, then it can be invoked.
(cont 42) with 5 assigned to c will produce 47.

Of course, this is not a complete characterization, and the rest of the back-
ground section will be used to foster a more complete understanding of contin-
uations. At many times, continuations will feel like an analogous construct in
another language; it may seem like a “first-class return” or a “snapshot of the
program state”; no single characterization is universally better than another.

Note that each expression or statement (in any programming language) has
an implicit continuation, and continuations are an incredibly general concept.
For example, the continuation of a statement in a sequence of statements is the
next statement. However, we are only concerned with reified continuations in

2



;;; consider the following expression: a*b+c

(+ (* a b) c)

;;; future of a: (lambda (val) (* val b))

;;; future of b: (lambda (val) (* a val))

;;; future of (* a b): (lambda (val) (+ val c))

;;; future of c: (lambda (val) (+ (* a b) val))

Figure 1: Continuation as the future of an expression

this report (i.e., continuations with a concrete implementation in the program-
ming language), and often first-class reified continuations (continuations that
appear as first-class objects to the programmer).

2.1.1 The call/cc API

In the previous section, continuations are characterized as procedures; but how
do we get these procedures? In Scheme, implicit continuations are exposed to the
programmer using the call-with-current-continuation procedure, which is
often aliased to call/cc. call/cc takes as argument a procedure that takes the
current continuation as a parameter. The continuation is a first-class object –
it can be stored in variables, passed as a parameter to functions, returned from
functions, and be a member of complex data structures.

call/cc will then execute the procedure. If the continuation is not invoked,
then the return value of the procedure is passed to the continuation of the
call/cc expression. If and when the continuation is invoked, then the value
given during the invocation is passed to the continuation of the call/cc expres-
sion. Several of call/cc usage are shown in Figure 2.

2.1.2 Continuation-passing style (CPS)

Continuation-passing style is a very instructive tool for discussing continuations
at a functional level.

First-class continuations can be implemented in any language with lambdas
(functions with lexical closures), by performing a syntactical transfomation of
functions to CPS, which is shown in Figure 3. Looking at the CPS form, we
can characterize a continuation in the following ways:

• Each function takes its continuation as an extra parameter.

• A continuation is only invoked as a tail-call (if a continuation is called, its
“then-current continuation will be abandoned”, so a non-tail call would
be wasteful).

• A continuation takes the result of the previous instruction as its singular
parameter.
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;; the original expression

(+ 1 (+ 2 (+ 3)))

;; => 6

;; continuations are optionally-resumable:

;; i.e., may not be invoked at all

(+ 1 (call/cc (lambda (cc) (+ 2 (+ 3)))))

;; => 6

;; invoking a continuation causes the current

;; continuation to be discarded; the continuation

;; of `(cc 3)` is `(lambda (val) (+ 2 val))`, and

;; this is never invoked

(+ 1 (call/cc (lambda (cc) (+ 2 (cc 3)))))

;; => 4

;; continuations are multiply-resumable:

;; i.e., may be invoked multiple times

(define cont '())

(+ 1 (call/cc (lambda (cc) (set! cont cc) (+ 2 (+ 3)))))

(cont 4) ;; => 5

(cont 5) ;; => 6

Figure 2: Sample usage of call/cc
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;;; without continuations; uses regular return

(define (add a b)

(+ a b))

(define (mult a b)

(* a b))

(define (a*b+c a b c)

(add (mult a b) c))

(display (a*b+c 1 2 3)) ;; => 5

;;; continuations using CPS

(define (add a b cont)

(cont (+ a b)))

(define (mult a b cont)

(cont (* a b)))

(define (a*b+c a b c cont)

(mult a b (lambda (a*b)

(add a*b c cont))))

(a*b+c 1 2 3 display) ;; => 5

Figure 3: Continuation passing style example

• A function written using CPS never returns normally – it must exit by
(tail-)calling a continuation.

Note that continuations in CPS are ordinary functions (“callbacks” in event-
driven coding), and thus can be used to implement continuations in a language
that doesn’t support implicit continuations. CPS is used by Abelson and Suss-
man to implement continuations in their nondeterministic interpreter, and this
is extended for this project.

Other ways to implement continuations will be discussed in §2.5.2.

2.2 Nondeterministic computing and the amb keyword

Abelson and Sussman implement the amb keyword in Scheme. This keyword
takes a set of possible values as input, and produces a value1 that satisfies all
of the assertions placed on the value in the future. For example, the example
shown in Figure 4 may assign to a either 3 or 5.

This can be implemented using a search over all the possible solutions. What
is really impressive is that we are able to state SAT problem in a declarative

1It is “nondeterministic” because the keyword only has to return a value that satisfies the
assertions (conditions). The exact choice of value is not important. This is a SAT-solver, as
Matt Might implements using CPS in his blog post on continuations.
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(define a (amb '(1 2 3 4 5)))

(require a odd?)

(require a prime?)

Figure 4: Sample usage of amb

manner, rather than embedding it in an algorithm2. Even more impressively,
we are able to state the constraints on an ambiguous value in its future, and
possibly after the value has already been used.

The key part to this implementation is the implicit3 use of continuations.
In this case, an additional error continuation is provided to handle the case of
a condition failing – this causes the next value to be tried (if any). This also
necessarily undoes any side effects (such as variable mutation) to effective “time
travel” to the point in the program where the ambiguous value is declared.

Functionally, this can be thought of as a try/catch statement, without the
user having to explicitly code the control flow (and simply because there is not
a builtin try/catch statement in Scheme).

The interpreter from section 4.3 is based off of the version in 4.1, which uses
a procedure-based intermediate representation (IR) for all expressions. The
expression is first parsed using the Scheme read procedure, and then semi-
compiled into this IR to avoid parsing every time the expression is encountered
(if the expression is invoked multiple times).

The form of the procedure representing the compiled expression (the expres-
sion IR) is shown in Figure 5. Whenever the expression is invoked, this lambda
is called with the current runtime environment.

The analogous expression IR for the nondeterministic backtracking inter-
preter from section 4.3 is shown in Figure 6. At runtime, each expression is also
given two continuations as parameters – this is known as continuation-passing
style (CPS). These continuations are ordinary procedures that should be used
to pass around the results of computations. The success continuation takes the
value from the previous computation and the failure continuation. The failure
computation is special, its only purpose being to discard the value and reverse
the stack and side effects so that the next value can be tried – it does not need
the value from the previous computation nor the success continuation.

2The same is true for generators, and is what makes them so powerful.
3This is my own terminology. I use “implicit” to refer to (reified) continuations that are

baked into the language and can be used by the interpreter to perform control flow. Optionally,
the interpreter may choose to expose these continuations via interfaces such as call/cc. I
use “explicit” to refer to CPS, in which reified continuations are implemented by the user as
explicit procedure calls.
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(lambda (env)

;; env stores the symbol table for the current scope

...)

Figure 5: Expression IR from section 4.1

(lambda (env succeed-cont fail-cont)

;; succeed-cont is of the form (lambda (value fail-cont) ...)

;; fail-cont is of the form (lambda () ...)

...)

Figure 6: Expression IR from section 4.3

2.3 Continuations versus other control-flow constructs

This section is structured similarly to the Wikipedia page on coroutines, which
is an excellent resource on coroutines.

2.3.1 Continuations vs. gotos

Gotos are the software equivalent to a jump instruction. They are very simple
and limited. For example, they can only jump to other locations in the current
function; jumping to another function without modifying the stack would cause
relative-addressing (local variables) to break. Also unlike gotos, continuations
usually return a value.

Continuations are more similar to C’s setjmp and longjmp functions, which
essentially save and restore a history of the stack. Not only does this allow you
to jump to different functions, it also allows you to jump back multiple levels of
the stack. However, reified continuations are more powerful (and expensive) in
that they are both optionally-resumable and multiply-resumable4.

In his blog post about continuations, Matt Might suggests an idiom that
behaves very similarly to setjmp/longjmp. For those who are unfamiliar with
these functions, setjmp is similar to fork in that returns different values de-
pending on the context. setjmp is encountered either it is the next statement
to execute, or when longjmp jumps to it. In the first case, it will return a falsy
value, and in the latter it will return the value specified in the longjmp call.

Might does not explicitly mention setjmp/longjmp in his blog post, but
the interface is remarkably similar. See a simple error-handling program with
a nonlocal jump in C/C++ is shown in Figure 7. The equivalent program in
Scheme, using the setjmp idiom (Might calls this current-continuation in
his examples), is shown in Figure 8.

4In order to be multiply-resumable, a continuation essentially needs to create a copy of the
stack whenever it is executed. See the section on implementation
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main() {

jmp_buf env;

int val;

val = setjmp (env);

if (val) {

fprintf (stderr,"Error %d happened",val);

exit (val);

}

/* code here */

longjmp (env,101); /* signaling an error */

}

Figure 7: Sample usage of setjmp/longjmp. Source: cplusplus.com: setjmp

Note that both goto and setjmp may be dangerous if there are side ef-
fects in the jumped code. goto is very dangerous since it can actually branch
forward in a function, skipping variable initializations completely. setjmp is
less dangerous in that it can only go back to a previous location on the stack
(which should be safe), but may cause issues with dangling or incorrect pointers
if cleanup code is skipped. Continuations (in Scheme) are safer because they
cannot branch forward in time, and because garbage collection would manage
dangling references.

2.3.2 Continuations vs. return

A continuation is like a return statement in that it usually passes a value and
it (conceptually) unwinds the stack to a given location. However, continuations
are optionally-resumable, multiply-resumable, and may unwind the stack more
than one stack frame5.

2.3.3 Continuations vs. callbacks

In CPS, continuations are simply callbacks that follow a specific form. In gen-
eral, first-class continuations feel very much like ordinary callbacks, in that they
are invoked with the result of a computation. For example, in Javascript where
event-driven coding is common, callbacks to asynchronous functions and the
Promise API look very similar to CPS.

5The latter is useful in exception handling, or when needing to jump back many stack
frames without the overhead of returning from each stack frame, such as in the backtracking
nondeterministic interpreter.
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(define (setjmp)

(call/cc (lambda (cc) (cc cc))))

(let ([longjmp (setjmp)])

(if [procedure? longjmp]

;; val == false

(begin

;; code here

(longjmp 101))

;; val = longjmp; val != false

(error 'setjmp-example

"Received error signal from longjmp"

longjmp)))

Figure 8: Useful Scheme idiom using continuation that behaves like setjmp.
Source: Continuations by example: Exceptions, time-traveling search, genera-
tors, threads, and coroutines

Of course, in the case of implicit continuations, there may be special ma-
chinery that manages program execution state that cannot be performed with
a regular procedure call, but the API is the same as a procedure.

Note that callbacks are also multiply-resumable, optionally-resumable, and
capture program state (capture its lexical environment). In general, we can
think of continuations as a specific type of callback.

2.3.4 Continuations vs. monads

Haskell users may know that continuations exist as a monad (Control.Monad.Cont).
Even for those who don’t (but are familiar with monads), the continuation’s
structure should feel monadic:

• Continuations act like a wrapper around a computation.

• Chaining computations looks very similar to the bind operation.

• Continuations are a control-flow structure.

Consider Figure 9, the Haskell analog of the CPS example shown in Figure 3.
Note that Haskell also has the callCC interface, similar to the call/cc proce-
dure. Figure 10 shows a sample monad instance declaration for the continuation
type. Unsurprisingly, the syntax between Scheme and Haskell turns out to be
very similar, even when Scheme continuations feel like procedures and Haskell
continuations feel like monads.
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import Control.Monad.Cont

mult :: Int -> Int -> Cont r Int

mult a b = return (a * b)

add :: Int -> Int -> Cont r Int

add a b = return (a + b)

-- a * b + c

atbpc :: Int -> Int -> Int -> Cont r Int

atbpc a b c = mult a b >>= add c

main = do runCont (atbpc 1 2 3) print

Figure 9: CPS in Haskell using Control.Monad.Cont

newtype Cont r t = Cont ((t -> r) -> r)

-- a value of type Cont r t is of the form Cont f,

-- where f is a function of type (t -> r) -> r

runCont (Cont f) q = f q

instance Monad Cont where

return :: t -> Cont r t

-- return takes a value of type t and produces a Cont

-- computation of type t with response type r.

return x = Cont (\q -> q x)

-- produce a Cont computation which given a question q,

-- applies the question to the value x.

(>>=) :: Cont r t -> (t -> Cont r s) -> Cont r s

x >>= f = Cont (\q -> runCont x (\v -> runCont (f v) q))

Figure 10: A simplified continuation monad in Haskell. Source: Cont computa-
tions as question-answering boxes

10

https://wiki.haskell.org/Cont_computations_as_question-answering_boxes
https://wiki.haskell.org/Cont_computations_as_question-answering_boxes


2.3.5 Continuations vs. threads

Continuations are like dormant, multiply-resumable threads. In particular,
threads represent the current execution context of a program, and can be
thought of as a snapshot of location on the stack. However, you cannot re-
sume a thread from the same position multiple times, unlike continuations.

WikiWikiWeb’s ContinuationExplanation hints that threads can be used to
implement continuations, and vice versa. It also mentions that some thread
implementations, such as POSIX pthreads, are not as powerful as continuations
and cannot fully implement all continuation use cases. Continuation implemen-
tation will be further discussed in §2.5.2.

Continuations and execution context (and in particular, concurrent threads
of execution) is part of the recurring theme, and will appear again in the dis-
cussion of coroutines.

2.4 Uses for continuations

2.4.1 Callbacks and promises

Even in languages without implicit continuations, callbacks (that look and act a
lot like continuations) are widely known and applied. Might’s blog post By ex-
ample: Continuation-passing style provides the example of a CPS-style wrapper
around the legacy XMLHttpRequest Ajax API6 that may look extremely natural
for Javascript users, even without knowing about continuations.

Another asynchronous programming model in Javascript is the Promise API,
which can be thought of as a modern wrapper around callbacks with some nice
features. Promises are objects that contain a computation, and allow you to
specify a success and error continuation explicitly using the Promise::then()

and Promise::catch() methods. Javascript promises have a number of inter-
esting features that make them more appealing than ordinary callbacks, such
as their ability to be await-ed to avoid “callback hell,” the ability to automat-
ically chain continuations, and the ability to attach multiple continuations to
the same operation (which would be called asynchronously due to Javascript’s
event loop).

Since promises and callbacks are more or less functionally equivalent, sce-
narios that are expressible using callbacks are also expressible using promises.
If we turn the example from Figure 3 into CPS, and then transform that to use
the Promise API, then we would get Figure 11.

As stated earlier, continuations model only a specific subset of callbacks or
promises that are useful for execution; namely a single success callback that
takes a single parameter (the result of the previous operation), and (optionally)
an error callback that takes a single parameter (the error message). For my
project, I aim to generalize implicit continuations to the case where there are

6I’m not sure when this blog post was written, since the modern fetch API uses promises
rather than callbacks.
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add = (a, b) =>

new Promise((succeed_cont, fail_cont) => succeed_cont(a+b));

mult = (a, b) =>

new Promise((succeed_cont, fail_cont) => succeed_cont(a*b));

atbpc = (a, b, c) =>

new Promise((succeed_cont, fail_cont) =>

mult(a, b).then(apb =>

add(apb, c).then(succeed_cont)));

atbpc(1, 2, 3).then(console.log);

Figure 11: CPS using Javascript Promises

an arbitrary number of continuations, which is similar to how a function is not
limited in the number of callbacks it receives.

2.4.2 Nonlocal branching

An example of nonlocal branching is the nondeterministic interpreter in SICP
section 4.3. Whenever there is a requirement conflict, we have to unwind the
stack to the location of the relevant amb invocation, which may be nonlocal.

A personal example I have is when I had to write an A*-search algorithm
and chose Scheme. Iterative deepening with a time limit was used; when the
time limit was reached, rather than unwinding up the arbitrarily-deep search
stack, a continuation served as a much simpler nonlocal goto. (Continuations
were not used for the DFS.)

2.4.3 Exception handling

This can be thought of as an example of nonlocal branching. To implement a
try/catch block, a stack of error (failure) continuations has to be implemented
alongside the ordinary (success) continuation. Matt Might shows this in his
blog post about continuations.

Alternatively, rather than only passing the ordinary continuation to each
function in CPS, both the success and failure continuations may be passed as
parameters to every function. This may be a little bit more inefficient but has
the same effect. This is how failure continuations were passed around in the
nondeterministic interpreter.

2.4.4 Coroutines (and generators)

As mentioned earlier, continuations are functionally very similar to (and po-
tentially more powerful than) threads. Thus, continuations may be used to
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implement cooperatively-scheduled threads7, coroutines (equivalent to cooper-
ative threads), and generators (a subset of coroutines).

Cooperative threading system Continuations can be used to implement a
cooperatively-scheduled threading system by maintaining a collection of
continuations representing threads. Each thread may voluntarily yield to
another available thread via the yield instruction. The collection may be
a queue and the next continuation in the queue will be chosen when a
thread yields; this forms a very simple round-robin scheduling algorithm.
Matt Might’s blog post on continuations includes this as an example. This
allows us to create concurrency (but not parallelism) in our interpreter.

Kotlin has an implementation of cooperative threading that is called corou-
tines (which are equivalent – see next example).

Coroutines A coroutine is a generalization of a subroutine (procedure) that
maintains execution state between calls. It may exit either normally (by
returning) or by yield ing to another coroutine; when it is invoked again,
it will resume execution from the yield point. Coroutines are functionally
equivalent to cooperatively-scheduled threads.

A simple way to implement coroutines is to store a table of continuations
for each function. Yielding to a coroutine would mean looking up its
continuation and invoking it with the yielded value.

Generators Generators are a restricted type of coroutine that is very useful.
A generator is a function that yields values one at a time. They are
useful as iterators over arbitrary data structures. To the outsider, calling
the function successively produces successive values of the collection; this
works because the function saves its execution context between calls and
thus doesn’t lose its position when iterating over the data structure.

Generators offer a nice solution to iteration that are roughly equivalent to
streams (streams are employed in SICP section 4.4 as an iterator, but a
generator would have worked as well). If neither streams nor generators
were present, then implementing an iterator function without nonlocal
state becomes difficult.

Generators are a strict subset of coroutines because the generator function
can only yield to its caller, while a full coroutine can yield to any other
coroutine. This simplifies the implementation and does not require a table
of continuations. Rather, the two functions (generator and consumer)
simply pass back and forth the new continuations and the yielded values.

Many languages implement generators due to their ubiquity, even if they
do not implement coroutines.

7Threads are typically preemptively scheduled, which means that they yield control to
another thread at arbitrary moments in their execution (generally to maintain performance
or responsiveness). Non-preemptive or cooperative scheduling means that a thread only yields
to another thread explicitly.
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Communicating sequential processes (CSP) CSP (not to be confused with
CPS) is a formal description of communication between concurrent threads
of execution. Coroutines (i.e., cooperative threads) are generally the mech-
anism associated with CSP to allow communication between processes. A
coroutine can efficiently yield its execution to a different coroutine; a nor-
mal thread complicates matters with its preemptive scheduling.

An example of this is Kotlin’s coroutines. Go’s goroutines are somewhat
of a hybrid between the two: they are lightweight user-space threads that
normally are preemptively scheduled, but have the ability to yield execu-
tion voluntarily. Go has a mechanism for communication between gorou-
tines called channels that are intended to model CSP.

2.4.5 Compiling with continuations

Continuations, and CPS in particular, have been used as a tool for expressing
control flow as a compiler IR, usually alongside TCO8. This dates back to the
first Scheme compiler, Rabbit, which used CPS as an IR. Since continuations
replace return statements, the stack model may be replaced with a similarly
efficient model involving only continuations. Tail calls can also be thought of as
“gotos with parameters,” which lends itself to efficient implementation.

Two resources on this are Matt Might’s CPS Conversion and Andrew Appel’s
Compiling with Continuations9.

2.5 Miscellaneous notes about continuations

2.5.1 One procedure call, multiple “returns”

One property of continuations made clear by the comparison to setjmp with
the idiom in Figure 8 is that the call/cc interface looks a lot like an ordinary
function call to the caller, in that it will (typically10) return a value to the caller.

However, call/cc also creates a branch point (think goto label), which
means that multiple values may be “returned” from that location if the con-
tinuation is invoked multiple times (recall that continuations are multiply- and
optionally-resumable, just like an ordinary goto label).

Note that this does not mean that a function may return by calling its current
continuation multiple times sequentially; the current continuation is discarded
and replaced by the the invoked continuation. This is illustrated in Figure 12.
The current continuation is called with value 1, and the current continuation of
invoking the continuation (which is the next statement) is discarded, so control
never reaches the next statement. This is equivalent to saying that invoking a
continuation is only useful as a tail call, since any instructions that come after
(i.e., the continuation of the invoking the continuation) are discarded.

8Note that CPS can be used without TCO, such as in the Chicken Scheme compiler, since
it is transpiled to C (in which implementing TCO may add considerable complexity), and
thus requires other optimizations to clean up the stack.

9I haven’t had the time to read these, but the latter is a famous text on the matter.
10Unless a continuation is invoked that unrolls the stack further than the calling statement.
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(define (does-not-multiply-return)

(call/cc (lambda (cc)

(cc 1) ;; expression a

(cc 2)))) ;; expression b

;;; The continuation of expression a is expression b.

;;; Invoking the continuation `cc` discards the

;;; continuation of expression a, i.e., expression b

;;; will not be executed.

(does-not-multiply-return) ;; => 1

Figure 12: The current continuation gets replaced by a call to a continuation

Another way to think of this is that you cannot call return in C multiple
times sequentially, as the second one is unreachable; however, what you can do
is save the return statement as a first-class object and (at some later point in
reachable code) invoke that statement to have the same behavior as returning
from that function.

2.5.2 Efficient implementation

It’s been hinted several times that the implementation of continuations would be
similar to the implementation of threads, since both involve saving a snapshot
of the execution state. Since continuations are multiply-resumable, it is more
difficult to implement efficiently than a thread, since we need to maintain a
pristine copy of the stack in case it is invoked more than once.

Another issue that makes it harder to optimize is that continuations have
unlimited extent – they exist over the lifetime of the program, potentially outside
of the context (closure) that they were created in. Thus it is possible to not
only unroll the stack to a previous position, but to also enter a deeper position
in the stack. As a result, optimizations must maintain a reference to all parts
of the stack that are present at the time of the continuation being called.

Segmented stacks and cactus stacks are optimizations that allow multiply-
resumable continuations unlimited extent by branching the stack and reusing
memory when possible. Copy-on-write (COW) is a common memory optimiza-
tion technique that also applies here to avoid copying the stack unless necessary.
A more complete discussion of implementation is given in WikiWikiWeb: Con-
tinuationImplementation.

As mentioned previously, one way to implement continuations is using CPS.
CPS usually depends on tail-call optimization (TCO).

We can simplify the implementation by restricting the capability of contin-
uations. One possible restriction is to only allow singly-resumable (but still
optionally-resumable) continuations. Another restriction is to only allow up-
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calls (unwinding the stack, i.e., limited extent) – these are called escape contin-
uations.

2.5.3 Flavors of continuations

In the previous section, we have already talked about two forms of restricted
continuations: single-use and escape continuations. Continuations with both of
these restrictions of these are very similar to setjmp – this is still powerful
enough for exception handling, generic nonlocal jumps. The WikiWikiWeb
article on single-use continuations notes that setjmp can be used to implement
a multi-use branch point using the very simple idiom while(setjmp(buf));.
The Wikipedia article on continuations notes that escape continuations are a
means to implement TCO.

There are also delimited continuations, which are a generalization of the
continuations mentioned thus far. Rather than capturing the entire execution
state, a part of the stack can be captured. Its API are the shift and control

procedures (rather than call/cc).

2.6 Analogs in other languages

Several examples of continuations in other languages have been provided; this
section serves as a summary.

In C, the flow-control capability of goto, return, and setjmp are all a subset
of the ability of continuations. Of these, setjmp is the most powerful and are
roughly equivalent to single-use escape continuations.

In Haskell, continuations are exposed as a monadic type. Expressing chained
computations using the bind (>>=) operator is very natural.

Many languages have some support for generators (e.g., Python), coopera-
tive scheduling (e.g., Kotlin’s coroutines), and CSP (e.g., Golang’s Goroutines).
These may not explicitly be implemented using continuations, but the machin-
ery is likely similar.

3 Multiple continuations

For this project, I decided to extend the Scheme interpreter by implementing a
system of multiple continuations in programmer-space via a call/cc-like inter-
face.

The following terminology should be established since we are working with
Scheme code in the implementation of the interpreter, as well as Scheme code
that may be run in the interpreter. This is non-standard – I’m not sure what
the convention is for interpreter-writers.

Programmer-space This refers to code that the programmer may type into
the interpreter.

Interpreter-space This refers to code in the implementation of the interpreter
(including any IRs for programmer-space constructs).
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3.1 Functional API

Functionally, multiple continuations is equivalent to CPS with an arbitrary num-
ber of continuations (callbacks), but the continuations are defined implicitly so
that the programmer does not have to carry the continuations through all of the
function signatures. This is a simple generalization of the single-continuation
scheme and may be useful where multiple “futures” are useful, such as a default
and error future in exception handling.

The implementation is based on sections 4.1 and 4.3 of SICP. The nondeter-
ministic interpreter uses a CPS IR but doesn’t expose continuations to the user.
It implements two continuations for every expression: a default (success) con-
tinuation, and a special-purpose backtracking (failure) continuation11. For this
project, the special failure continuation is removed, and the default continuation
is replaced with a list of continuations.

To the programmer, the introduction of multiple continuations change would
look like the creation of a few APIs, described below, that are not present in the
interpreter given in the book. The first is the familiar call/cc API (which does
not require multiple continuations). In the case of the latter APIs, we establish
the convention that the first continuation is the default continuation, the second
continuation is an error continuation, and any others are user-defined.

3.1.1 Exposing continuations via the call/cc API

This API should appear to the programmer exactly like the builtin call/cc

implementation described in §2.1.1. In particular, it should call the provided
procedure with the current (default) continuation as the sole argument. The
continuation should be a first-class object, and invoking it should appear no
differently than an ordinary function call. If a continuation is invoked, then the
current continuation should be discarded.

This is implemented in terms of the more general case for multiple continu-
ations; the implementation is shown in Figure 13.

3.1.2 Multiple continuations via the call/ccs API

This API is very similar to call/cc, except that the argument to the function
is the list of current continuations.

As an example, the code to send a value to the error continuation (to throw

a value) is shown in Figure 13.

3.1.3 User-defined continuations via the call/new-ccs API

This API is unlike anything in the Scheme language, so it is worth describing
it here. This procedure takes two arguments: a procedure that transforms the

11Alternatively, the failure continuation may be implemented in an external runtime stack
rather than be passed around to every function as a parameter – this may be more efficient.
Exceptions may also be handled this way.
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;;; implement `call/cc` using `call/ccs`

(define (call/cc f)

(call/ccs (lambda (ccs)

(f (car ccs)))))

;;; implement throw using `call/ccs`

(define (throw val)

(call/ccs

(lambda (ccs)

((cadr ccs) val))))

;;; swap the default and error continuations using `call/new-ccs`

(call/new-ccs

;; cc transformer function swaps first and second ccs

(lambda (ccs)

(cons (cadr ccs)

(cons (car ccs)

(cddr ccs))))

42 ;; goes to error continuation

; (throw 42) ;; goes to default continuation

)

Figure 13: Intuitive of the API functions

current continuations and produces the new continuations, and an expression
to invoke with the new ccs.

As an example, the code to switch the default and secondary continuations
is shown in Figure 13.

3.2 Implementation

All of the expression syntactical analysis functions in the IR must return a CPS
function, in the same manner as the nondeterministic interpreter. However,
instead of receiving two continuations, it receives a list of continuations. For
almost all cases, the procedure is exited by calling the first (default) continuation
with the expression value.

The tricky part is that every time we invoke an IR procedure of this form,
we must supply an array of continuations. If we need to modify the default
continuation, then we must cons this to the rest of the original continuations.
This makes the CPS more tedious.

To represent the continuations (ordinary procedures in interpreter-space) as
procedurs in programmer-space, we must wrap them with some metadata like
we do for primitive and compound procedures. In this case, we simply tag
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the continuation with the symbol 'continuation. Continuation invocation is
treated the same as a primitive procedure in execute-application, except that
the current continuations are discarded when a continuation is executed.

The implementations for call/ccs and call/new-ccs is shown in Figure 14.
The implementation for call/cc was already shown above; it is a special case
of call/ccs, and can be trivially written in terms of it. (Note that while the
former two are special forms, the latter is an ordinary procedure in programmer-
space.)

Note that the continuations for the user-specified continuations in call/new-ccs

are the continuations for the call/new-ccs expression. This essentially auto-
matically creates a stack of continuations. For example, throwing an exception
inside a try/catch block would go to its error continuation (the catch clause).
Throwing an error inside the catch clause would then go to its error continuation
(which should be the error continuation of the try/catch block).

I should also add that I do not know how continuations and the call/cc in-
terface are implemented in Scheme (and the implementation may differ between
Schemes). This is also not intended to be a very efficient implementation, but
is rather a proof-of-concept that continuations can be implemented very simply
in a functional language with lambda closures, garbage collection, and TCO.

There may be a number of safety issues with call/new-ccs, especially with
the ability to overwrite the default continuation. For this exploratory assign-
ment, I have left it alone in all its dangerous glory, but this should probably not
be productionized.

3.3 Examples

Implementing try/catch is very simple in programmer-space, and is shown in
Figure15 (the implementation for throw was already shown in Figure 13). The
only caveat is that the try and catch clauses must be provided as lambdas
rather than plain expressions, in order to avoid their eager evaluation. (If it
were implemented as a special form, or if syntactic macros were implemented
in the interpreter, plain expressions would be possible.)

Matt Might also provides an example of generators using continuations in
his blog post Continuations by example: Exceptions, time-traveling search, gen-
erators, threads, and coroutines. While this does not use multiple continuations
at all, it is a good proof-of-concept of generators, and is more evidence that my
implementation of call/cc is correct. My implementation of the generator in
programmer-space is not the most convenient form. Might writes his in terms of
syntactic macros to make the syntax much more appealing. My implementation
is shown in Figure 16.

3.4 Source code

My implementation as the files 4.1/4.1.scm and cont/conts.scm in the GitHub
repository jlam55555/sicp. Chez Scheme 9.4 was used as the Scheme of choice.
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(define (mi::analyze-call/ccs exp)

;; for (call/cc f), call f, binding the continuation

;; as a primitive procedure to the argument of f

(let ([fproc (mi::analyze (mi::call/ccs-arg exp))])

(lambda (env ccs)

(fproc

env

(cons

(lambda (proc)

(mi::execute-application

proc

(list

(map (lambda (cc) (list 'continuation cc)) ccs))

ccs))

(cdr ccs))))))

(define (mi::analyze-call/new-ccs exp)

(let ([fproc (mi::analyze (mi::call/new-ccs-generator exp))]

[body (mi::analyze (mi::call/new-ccs-body exp))])

(lambda (env ccs)

(fproc

env

(cons

(lambda (proc)

(mi::execute-application

proc

(list

(map (lambda (cc) (list 'continuation cc)) ccs))

(cons

(lambda (new-ccs)

;; no safety checks!!! run body with

;; user-supplied ccs mapped to primitive procs

(body env

(map

(lambda (cc)

(lambda (val)

(mi::execute-application

cc

(list val)

ccs)))

new-ccs)))

(cdr ccs))))

(cdr ccs))))))

Figure 14: Implementations of call/ccs and call/new-ccs
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(define (try/catch try catch)

;; try is a thunk

;; catch is a proc that takes the error msg as input

;; both try and catch return a value

(call/new-ccs

(lambda (ccs)

(cons (car ccs)

(cons catch

(cdr (cdr ccs)))))

(try)))

(define (my-/ x y)

;; modified version of `/` that calls the error

;; continuation on div0

(if [= y 0]

(throw "my-/: /0")

(/ x y)))

(try/catch

(lambda () (my-/ 1 2))

(lambda (err) "oh no"))

;; => 1/2

(try/catch

(lambda () (my-/ 1 0))

(lambda (err) "oh no"))

;; => "oh no"

(try/catch

(lambda () (throw 32))

(lambda (err) (throw 54) "oh no"))

;; => "top-level error continuation called with irritant 54"

Figure 15: try/catch implementation and usage
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(define (current-continuation)

(call/cc (lambda (cc) (cc cc))))

(define (tree-iterator tree)

(lambda (yield)

(define (walk tree)

(if [not (pair? tree)]

(yield tree)

(begin

(walk (car tree))

(walk (cdr tree)))))

(walk tree)))

(define (make-yield for-cc)

(lambda (value)

;; `yield` implementation

(define cc (current-continuation))

(if [procedure? cc]

;; when called from generator, return to for loop cont

(for-cc (cons cc value))

;; when called from for loop, return to generator cont

(void))))

(define (for-generator iterator body)

(define (loop iterator-cont)

(define cc (current-continuation))

(if [procedure? cc]

;; get next value using the generator continuation

(if iterator-cont

(iterator-cont (void))

(iterator (make-yield cc)))

;; value handler: receive new value and continuation

[begin

(body (cdr cc)) ; next generator value

(loop (car cc))])) ; next generator continuation

;; begin iterator loop with no iterator continuation

(loop false))

(define (println val) (display val) (display "\n"))

(for-generator (tree-iterator (cons 3 (cons (cons 4 5) 6)))

println)

;; => 3 4 5 6

Figure 16: Demonstration of generators using call/cc
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4 Conclusion

I was able to explore continuations to a much greater depth of understanding
than before. Perhaps more importantly, this discussion has piqued my interest
on a number of other related topics, including: segmented and cactus stacks;
delimited continuations; implementation of Javascript Promises and their rela-
tionship to monads; goroutine implementation and relationship to coroutines;
reading Andrew Appel’s Compiling with Continuations.

Unfortunately, my extension to the continuations API is probably not that
useful; with the exception of the simple implementation of try/catch in programmer-
space, I could not think of any other use cases where this API is more useful than
simply passing around multiple continuations (or simply callbacks) as needed.
Efficiency was not a concern during this project, but this new feature probably
adds a nontrivial overhead to function calls as well.

5 References

Since most of the sources are not academic with auto-generated BibTeX cita-
tions, and are easily accessible via the web, I have chosen to include the sources
as links throughout the document in lieu of a more formal citation style.
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