
Program Analysis

Prof. Sable

Independent Study Syllabus

1 Overview

Program analysis is a logic-based approach to analyzing software. One of the
most important uses is to verify the correctness of programs – i.e., that it func-
tions exactly as the programmer intends. For example, verification is useful for
checking the correctness of new programming paradigms (such as declarative
concurrent languages or intermittent programming). Other uses of program
analysis are to find general bugs, augment software test frameworks, and opti-
mize software. Possible resources for this I.S. are:

• Stanford: CS 357: Advanced Topics in Formal Methods

• CMU: 17-355/17-665/17-819 Program Analysis

• Resources for Teaching with Formal Methods

The primary text and schedule are based off of the CMU course. The text is
Program Analysis by Jonathan Aldrich, Claire Le Goues, and Rohan Padhye.

2 Workload

The workload would mostly consist of readings and weekly class discussions.
Supplementary exercises are also available on the CMU course webpage. There
would also be a final project.

Two potential final projects are:

• Perform research on an advanced topic (e.g., the topics covered at the end
of the CMU course), and present the knowledge in a report and verbal
presentation.

• Show some of the results from the class using formal methods software,
such as Coq.

1

https://web.stanford.edu/class/cs357/
https://cmu-program-analysis.github.io/2021/
https://avigad.github.io/formal_methods_in_education/


3 Weekly Schedule

Some of the chapters are out of order – we mostly follow the CMU schedule.

1. Initial discussion and course planning

2. Ch1-3: Introduction, Program Representation, and Syntactic Analysis

3. Ch4: Dataflow Analysis and Abstract Interpretation

4. Ch5: Data Analysis Examples

5. Ch6: Dataflow Analysis Termination and Correctness

6. Ch7: Widening Operators and Collecting Semantics

7. Ch8: Interprocedural Analysis

8. Ch9: Control-Flow Analysis for Functional Languages

9. Ch11: Hoare-style Verification

10. Ch13: Symbolic Execution

11. Ch14: Concolic Testing

12. Ch16: Fuzz Testing

13. Ch12: Satisfiability Modulo Theories (SMT)

14. Ch15: Oracle-Guided Synthesis

15. Final Project Presentations

2


	Overview
	Workload
	Weekly Schedule

