
THE COOPER UNION
FOR THE ADVANCEMENT OF SCIENCE AND ART
ALBERT NERKEN SCHOOL OF ENGINEERING

IMAGE VECTORIZATION
FOR ARCHITECTURE

Jonathan Lam, Derek Lee, Victor Zhang

ECE395 Mid-year Report
Professor Sam Keene

December 2021

Contents

1 Abstract 3

2 Introduction 4

2.1 Goal . 4

2.2 Previous Works and Motivation 4

2.3 Methods . 4

2.4 Potential Applications . 5

3 Background 6

3.1 Raster Graphics . 6

3.2 Vector Graphics . 6

3.3 Scalable Vector Graphics File Format 7

4 Related Work 8

4.1 Tracing Methods for Vectorization 8

4.2 Machine Learning Approaches to Vectorization 10

4.3 Sampling Methods for Vectorization 11

4.4 Vector Image Optimization . 12

5 Methods 14

5.1 General . 14

5.2 Sampling . 14

5.3 Mesh Optimization . 17

5.4 Writing to SVG . 17

5.5 Evaluation Metric . 17

5.6 Implementation stack . 22

6 Conclusion 23

1

7 Future Work 24

8 References 25

2

1 Abstract

Architecture projects often involve both large structures and detailed compo-

nents, and are often highly geometric. Digital architecture designs (i.e., created

through the use of CAD) are often stored in a vector (shape-based) format for

convenient editing. Raster (pixel-based) images, such as photographs, are not

as easily used for these purposes, which largely diminishes their usability for the

design process. Our project aims to develop a image vectorization method (i.e.,

a tool to convert from raster to vector format) specialized towards architecture

images and explores the potential of vector-based images in the architecture

design process and in machine learning preprocessing.

There are several general methods for image vectorization – we propose a

sampling-based vectorization method involving three steps. The image is sam-

pled using a blue-noise sampling technique, which extracts the high frequency

components in the image and filters out the less important pixels. The sam-

pled point cloud is then simplified to reduce the number of vectors in the final

drawing. Finally, the last step involves converting the point cloud to an efficient

vector representation. This vector representation is saved as some vector image

format, such as SVG.

3

2 Introduction

2.1 Goal

Our project aims to provide an end-to-end image vectorization tool. Vectoriza-

tion is the process of generating a vector image that is faithful to the input raster

image. We aim to specialize in architectural images specifically, which should

allow us to optimize our project for this use case. Architectural images are usu-

ally highly geometric, which should allow for an efficient vector representation.

In theory, a highly geometric image should have a vector representation that is

more efficient than the original image. Of course, with real images, the image

will not be perfectly geometric. However, we are comfortable with information

loss, as long as the main content of the image is preserved; we will develop a

suitable loss metric to quantify the representation efficiency and error loss.

2.2 Previous Works and Motivation

Some of the first image vectorization tools implemented edge tracing, which

works well for simple shapes, and especially in black-and-white (or similarly

color-thresholded) images. However, architectural images are more complex

and can have wide range of colors, rendering traditional method ineffective. A

new vectorization method is developed to work effectively for colored complex

images, and generates vector representation that is easy to use for architects.

2.3 Methods

Multiple methods has been considered for this project, including traditional

edge tracing, machine learning, and sampling. These methods are compared,

and the sampling method is proven to be most effective for our use case.

4

2.4 Potential Applications

Our project can potentially be applied to the architecture design process, along

with vector-based machine learning. One of the use cases we envision is to take

a photo of an architectural design, use our project to process that image, and

use the vector-based output to easily edit the image. Another potential use case

is for vector-based machine learning. In computer vision, image data used as

input is traditionally in raster format – there is little research performed on how

well deep learning performs on vector-based image inputs. We imagine that due

to the efficiency of its representation, especially for highly-geometric shapes, we

may be able to have more useful information in the deep learning model from

the outset. In other words, a conversion to vector-based models, in which the

shapes contain meaningful information about the image, may be useful as a

machine learning preprocessing step.

5

3 Background

3.1 Raster Graphics

Raster images are the simple matrix representation of an image. A raster image

is conceptually a matrix of pixels, or a bitmap. Each pixel may contain multiple

data points representing channels (colors). Historically, bitmaps have been the

dominant representation for images due to their conceptual simplicity and the

array-based display (and framebuffer) of modern screen technology. Much effort

has been spent in enhancing the compression (e.g., lossy JPEG compression vs.

lossless PNG compression) and analysis of raster images. Many image analysis

methods depend on the grid-like representation of raster images, such as in the

case of efficient parallel computation. Standardized raster images tend to have

better support than vector graphics on older devices.

3.2 Vector Graphics

Vector graphics are not represented as pixels, but rather as a collection of pa-

rameterized geometric shapes. One of the immediate benefits is an efficient

representation for purely geometric images, and the efficient and perfect scal-

ing of continuous geometric objects. In order to display a vector image onto a

pixel-based screen, the vector image first has to be rasterized, or rendered. Vec-

tor graphics are especially useful for web graphics and other highly geometric

designs, such as maps, CAD, and typography. However, vector-based designs

tend to be more inefficient for arbitrary image data (with high entropy), due to

the relative complexity of shapes to pixels.

6

3.3 Scalable Vector Graphics File Format

Scalable Vector Graphics, or SVG, is a standard for vector graphics that uses

the XML text format. All elements are represented using combinations of seven

geometric shapes: Path, Rectangle, Circle, Ellipse, Line, Polyline, and Polygon.

Since it is a textual format, it can be easily examined and manipulated by

computers or by humans. The SVG standard is stable and supported by many

applications, including PDF viewers and web browsers.

7

4 Related Work

4.1 Tracing Methods for Vectorization

One of the successful earlier methods in image vectorization is called tracing,

and at the time was synonymous with image vectorization. The general intuition

behind this is that a raster image can be thought of as a collection of adjacent

image patches, and we can vectorize an image by detecting edges of shapes.

A noteworthy implementation of image tracing is the Potrace algorithm [5].

As the name suggests, Potrace first attempts to convert a raster image into

a series of polygonal paths via edge detection and straight-line detection, and

then attempts to simplify (optimize) polygons by reducing path cardinalities and

introducing Bezier curves. It employs many useful heuristics to improve image

quality, such as removing speckles smaller than a given “turd size,” detecting and

smoothing corners, redundancy coding in the target format, scaling and rotating

a small set of parameterized curves, and data quantization. An illustration of

the stages of the Potrace algorithm are shown in Fig. 1. The implementation of

Potrace is open-source, and the program is highly configurable via command-line

options.

This interpretation of vectorization is useful for simple raster images that

are indeed a collection of adjacent shapes, such as map data, floor charts, ty-

pography, or charts. For such images, the Potrace algorithm is both reliable and

efficient. While we do not use Potrace in our implementation, we may borrow

some of its features related to curve optimization when simplifying the shapes

(this is future work).

One of the drawbacks of tracing is that we can only trace edges on a binary

thresholded image; if there aren’t clearly defined edges, or if there are image

gradients (as is often the case), it doesn’t represent an image as well. Tracing

can be applied to color images by thresholding the image by color or brightness

8

Figure 1: An illustration of the Potrace [5] vectorization process

9

level, and producing vector images for each thresholded layer, but this may

seem choppy and low-quality. Tracing also does not recognize non-contiguous

shapes (e.g., simple shapes that intersect other shapes), which can allow for

more aggressive optimization and better object recognition. Machine learning

approaches are better at recognizing this (citation).

4.2 Machine Learning Approaches to Vectorization

Figure 2: Architecture overview for Im2Vec from [4]

Im2Vec is an end-to-end deep neural network introduced by Reddy et al. [4].

The model takes a raster image as input and outputs an SVG image. The raster

image is first passed through an encoder. The encoded representation is then

passed through a Recurrent Neural Network (RNN), specifically a bidirectional

Long Short-Term Memory network (LSTM), to produce an arbitrary number

outputs. Each output is passed through a path decoder, which produces a Bézier

path.

The path decoder uses continuous deformation of the unit circle to ensure

each path is closed. The authors sample points on the unit circle and concate-

nate the output of the RNN to each of the sampled points. The authors next use

1D convolutions, equivalent to convolution around the perimeter of the circle,

10

to determine how to deform the unit circle.

This model is trained by appending a differentiable rasterizer to the output.

The rasterizer converts the vector output back to raster format and the resulting

image can be compared to the original image to compute a loss. Since the

rasterizer is differentiable, that loss can be backpropagated through the model.

We explored using this model as part of our approach, but after looking

through the codebase, we discovered that this would likely not work for our

purposes. It appears that the authors hard-coded the number of shapes in the

input raster image, along with the colors that each shape should be. We are

looking to apply our model to various types of architectures, which will likely

not be as well-defined as the emojis used in their experiments.

4.3 Sampling Methods for Vectorization

Sampling methods tackle the vectorization problem by stochastically approx-

imating regions of the vector image. This allows us to achieve a reasonable

performance and accuracy. Sampling methods may approximate edges less ac-

curately than edge tracing, but they can overcome some of tracing’s limitations,

namely being limited to binary thresholding. Like tracing methods, it extends

fairly well to more complicated images, while machine learning methods cur-

rently appear to be more limited to simple images.

An example procedure for image vectorization through sampling is shown

in Zhao et al.’s work Zhao, Feng, and Zhou [6]. The sampling method for

vectorization is composed of 3 steps. The image is first convoluted with a Sobel

differential operator to generate an “importance matrix.” This represents the

discontinuities or gradients in the original matrix; larger gradients may indicate

regions with more detail. We then apply blue-noise sampling to the image

using the importance matrix to determine sampling density around each pixel,

11

with a larger gradient causing a higher sampling density. The sampled points

are then triangulated, and the line segments of the triangles form the vector

representation of the image.

4.4 Vector Image Optimization

Several methods for optimizing a polygonal path (i.e., a closed polyline) into

a smaller polyline, and by expressing curved sequences of edges as a single

Bezier curve, are explored in the Potrace algorithm [5]. However, this only deals

with simplifying curves, while maintaining the overall topology. The sampling

method generates a triangulate mesh rather than a sequence of closed paths; in

this method, the optimization scheme may look different and may change the

overall topology. For example, we do not have any polylines to curve-optimize

unless some edges are removed to form non-triangular polygonal patches; it is

then a matter of which edges can be removed while retaining fidelity to the

original image.

Hoppe [2] describes an approach to reduce triangular meshes by merging two

adjacent vertices in an arbitrary n-dimensional triangular mesh. This technique

also results in a triangular mesh, and thus may be useful for 3-D modeling. The

method attempts to optimize volume preservation using a quadric error metric

and color attribute discontinuities across triangle bounds, illustrated in Fig. 3.

We can be more aggressive than Hoppe’s method and not preserve triangular

regions, since we are working in a two-dimensional space. We can use their idea

of respecting color discontinuities to remove edges, and then perform Potrace’s

curve optimizations on the resulting polygonal areas.

12

Figure 3: Collapsing an edge in [2], taking into consideration color discontinu-
ities

13

5 Methods

5.1 General

The end goal of the project is to develop an efficient system for image vector-

ization. The system would take any image as input and output an SVG repre-

sentation of the original image. The system is mainly composed of 3 different

components.

5.2 Sampling

The sampling process is based on [6]. The input image is a regular bitmapped

image, such as Fig. 4. The first step is to apply the gradient operator on the

image to get the importance matrix, shown in Fig. 5. This involves pixel-wise

convolving with four 3× 3 Sobel filters (horizontal, vertical, and two diagonals)

and finding the magnitude to determine the magnitude of the gradient, which

is interpreted as the local information content or “importance” of the area sur-

rounding a given pixel. Next, the importance matrix is thresholded so that only

points of high importance are retained, shown in Fig. 6. This is essentially a

high-pass filter; low-frequency components of the image are lost. The intuition

is that low-frequency elements can be represented with uniformly-colored shapes

without much information loss.

Now we perform the sampling to obtain Fig. 7. The sampling density at a

pixel is a function of the importance of that pixel; a higher importance leads

to a higher sampling frequency. This is known as “blue-noise” sampling, and

allows us to focus more detail on regions of higher information content. Af-

ter sampling, the image is converted to a triangular mesh by performing the

Delaunay triangulation, as shown in Fig. 8.

14

Figure 4: Original image

Figure 5: Importance function applied to the image

15

Figure 6: Thresholded points

Figure 7: Sampled points

16

Figure 8: Triangulated image

5.3 Mesh Optimization

This is a future goal for spring semester and has not been implemented yet.

5.4 Writing to SVG

We convert internal representations of triangles (tuples with 3 pairs, representing

the coordinates of each point on the triangle) to an SVG file. We use Python’s

pycairo library to accomplish this.

In the future, we may also attempt to optimize this, such as by coding

redundant information.

5.5 Evaluation Metric

We implemented an evaluation metric based on content loss from Dumoulin,

Shlens, and Kudlur [1]. Similar to the methodology used by the authors, We

use a pre-trained VGG-19 and strip off the conv5 and fully-connected blocks.

It is important to note that the authors used a VGG-16. We use a VGG-19,

17

similar to Huang and Belongie [3]. In order to get the content loss between

two images, we take the Euclidean distance between the outputs of the stripped

VGG-19.

The reason that we strip off the conv5 and fully-connected blocks is to obtain

the high-level feature maps in the classifier. We consider the high-level feature

maps to be the intermediate representation of the content of the image. This

stems from a hypothesis for deep convolutional neural networks: the early layers

in a classifier are used to extract low-level features, such as edges, while the later

layers of the classifier combine the low-level features to create high-level features,

such as an arm or a leg.

We tested the content loss metric on three images related to style transfer

using Generative Adversarial Networks. The images were from https://www.

tensorflow.org/tutorials/generative/style_transfer.

18

https://www.tensorflow.org/tutorials/generative/style_transfer
https://www.tensorflow.org/tutorials/generative/style_transfer

Figure 9: Yellow Labrador Looking, from Wikimedia Commons

19

https://commons.wikimedia.org/wiki/File:YellowLabradorLooking_new.jpg

Figure 10: Composition VII by Wassily Kandinsky

20

Figure 11: Generated image produced with style transfer

Fig. 11 is generated using the content from Fig. 9 and the style from Fig. 10.

We calculated the content loss between all three pairings of the above images.

The results are displayed in the table below.

Image 1 Image 2 Content Loss
Fig. 9 Fig. 11 132352.05
Fig. 9 Fig. 10 190958.28
Fig. 10 Fig. 11 190266.86

Table 1: Sample content loss for example images

As can be seen in Table 1, the lowest content loss is between Fig. 9 and

Fig. 11, which is expected. In addition, the content loss between Fig. 10 and

the other two images is almost the same, which makes sense, because the other

21

two images should have the same content with different style.

We may want to refine this evaluation metric in the future. The content

loss values are extremely large and are difficult to interpret on their own. We

may wish to use a baseline image when comparing the results of our project.

We would thus compare three images (the original image, the vectorized image,

and the baseline image). This baseline image can be arbitrarily selected. The

purpose of the baseline image is to provide context to the content loss values.

Similar to the above example, we would compare all three pairings of the images.

We would want the content loss between the original image and the vectorized

image to be the lowest. We would also want the content loss for the other two

pairings (with the baseline image) to be relatively similar.

5.6 Implementation stack

The current implementation is a mix of Python and C++. The image process-

ing components utilize OpenCV for GPU support and will be multi-threaded.

Efficiency of the process is not a concern at this point; we care more about

optimizing for the error metric. Future iterations of this project may consider

efficiency of implementation.

22

6 Conclusion

Image vectorization is the process of converting a raster image to a vector image,

and may lead to efficiency gains for highly vectorized images. While vectoriza-

tion has been used successfully on simple vector-based input images in the past

such as map or typography images, we aim to improve its output on highly-

geometric but less-exact images, such as architectural images. We believe that

this may be useful in the architectural design process, and perhaps in other

design processes whose subject is highly geometric.

We have implemented a basic framework for vectorizing raster images, pri-

marily based on [6]. We can take an input image, perform sampling on the

image, triangulate the sampled points, and produce an output image. So far

we have yet to optimize this method towards architecture – this will involve

optimization stages after producing the mesh.

23

7 Future Work

In the upcoming semester, we would like to experiment with different vector-

ization approaches. This may involve different sampling methods or different

optimizations. We may choose a different method for generating vectors from

the sampled points. Currently, we are using a standard Delaunay triangulation,

although there may be alternative methods available.

We may change our evaluation metric if we discover a better metric. We

will rank each of our approaches according to our evaluation metric. By the

end of the upcoming semester, we will also produce a presentation describing

our results, along with a final report that contains the final decisions made for

our project.

An approximate timeline for the spring semester may look like:

January Begin work on mesh optimization, review prior work.

February Continue mesh optimization, clearly define evaluation metrics.

March Begin gathering results and evaluating using given metric.

April Finish result-gathering, begin final report and presentation.

May Complete final report and presentation, present results.

24

8 References

[1] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A Learned

Representation For Artistic Style. 2017. arXiv: 1610.07629 [cs.CV].

[2] Hugues Hoppe. “New quadric metric for simplifying meshes with appear-

ance attributes”. In: Proceedings Visualization’99 (Cat. No. 99CB37067).

IEEE. 1999, pp. 59–510.

[3] Xun Huang and Serge Belongie. Arbitrary Style Transfer in Real-time with

Adaptive Instance Normalization. 2017. arXiv: 1703.06868 [cs.CV].

[4] Pradyumna Reddy et al. Im2Vec: Synthesizing Vector Graphics without

Vector Supervision. 2021. arXiv: 2102.02798 [cs.CV].

[5] Peter Selinger. “Potrace: a polygon-based tracing algorithm”. In: Potrace

(online), http://potrace. sourceforge. net/potrace. pdf (2009-07-01) 2 (2003).

[6] Jiaojiao Zhao, Jie Feng, and Bingfeng Zhou. “Image vectorization using

blue-noise sampling”. In: Imaging and Printing in a Web 2.0 World IV.

Vol. 8664. International Society for Optics and Photonics. 2013, 86640H.

25

https://arxiv.org/abs/1610.07629
https://arxiv.org/abs/1703.06868
https://arxiv.org/abs/2102.02798

	Abstract
	Introduction
	Goal
	Previous Works and Motivation
	Methods
	Potential Applications

	Background
	Raster Graphics
	Vector Graphics
	Scalable Vector Graphics File Format

	Related Work
	Tracing Methods for Vectorization
	Machine Learning Approaches to Vectorization
	Sampling Methods for Vectorization
	Vector Image Optimization

	Methods
	General
	Sampling
	Mesh Optimization
	Writing to SVG
	Evaluation Metric
	Implementation stack

	Conclusion
	Future Work
	References

