
ECE395: Ideas for Senior Projects

Jonathan Lam

09/06/21

Three potential project ideas are proposed:

1 Typed Filesystem

Modern tree-like filesystems have never enforced any structure on their con-
tents, other than through the use of permissions. It may be useful for package
management, human recall, security, and programmability that certain con-
ventions be followed in a file hierarchy. The *nix OS tend to follow some
variant of the Filesystem Hierarchy Standard, but it has no means of en-
forcing it; installing packages in the wrong place (whether from bad install
scripts or by user error), for example, may cause compatibility problems. We
propose a new FUSE layer that lies on top of a working filesystem, which
enforces a (user-specified) schema. To achieve this, we also introduce new
filesystem error messages (caused by lack of adherance to the schema), con-
flict resolution strategies, and a type hierarchy for use in the schema.

1

2 SVG Video Compression for Variable-Fidelity,
Low-Bandwidth Video

In the COVID-19 era, we live in the age of Internet calls. These are often in
the form of voice or video calls. In the latter, a common problem is that of
limited Internet bandwidth, which often limits us to the former. A common
use for video calls is to transmit a user’s casual presence (e.g., an image of
their face, facial expressions, and surroundings) rather than fine details such
as text, and often users may call from their phone in an Internet-constrained
environment (e.g., outdoors) – in this case, we may desire a lower-fidelity,
but also low-bandwidth, video streaming solution.

We propose a novel vector-based video format for transmitting vector
video in an binary SVG-equivalent format, as well as a deep-learning model
to convert videos to SVG frames in real-time based on YOLO-net’s real-
time object detection. The model will allow tweaking of the of "compression
level" (fidelity) by adjusting the output shape density.

2

3 An Intentional Programming Framework for
Programming and SWE Education

(This is an idea for my M.Eng. thesis, but in the spirit of proposing project
ideas I’d like some feedback on this as well.)

There are many common difficulties among programming students; these
include remembering syntax, comprehending error messages, mapping con-
ceptual steps into code, structuring code in a meaningful way, and recalling
what a piece of code is supposed to do. While integrated development envi-
ronments (IDEs), beginner-oriented domain-specific languages (DSLs) (e.g.,
Scratch), and beginner-oriented techniques such as gradual programming
(e.g., Hedy) aid the learning experience, these techniques are still usually
locked into the mindset syntax of a single language and do not enforce good
programming practices such as abstraction and self-documentation.

I propose an "intent-driven" method for programming education, which
involves the creation of an IDE, a DSL, and drivers to transpile the DSL
into target programming languages. The DSL will follow the "intentional
programming" (Simonyi 1995) programming paradigm, which is a tree-like
program representation independent of programming language that allows
the user to encode their "intent" at various levels of abstraction. Intents
separate purpose from implementation. An intent loosely corresponds to a
language-level construct like a procedure, control-flow statement, or special
form, but this is transparent to the user, who sees only a building block
for abstractions. In this representation, the user describes their intent in an
Lisp-like syntax-less manner, and is recursively prompted to define subin-
tents until each intent is defined in terms of primitive intents. The purpose
and API of each intent must be documented ("literate programming"). The
IDE manages intent definitions, enforces the intent structure, allows "zoom-
ing" of abstraction level (similar to code folding), and transpiles to target
languages (and relays error messages from the target compiler). The ben-
efits are many-fold. IP: is easier to learn than a "real" programming lan-
guage; allows experimentation with language features ("genes") across pro-
gramming languages; encodes SWE best-practices such as top-down design,
test-driven development, and self-documentation; relates errors to functional
rather than lexical location; reduces cognitive load by intuitive code-folding;
encourages learning by-example rather than by-error via a community of
(well-documented) user-submitted intents; promotes polyglot programming;
and allows grokking overall concepts in their own words ("language-oriented
programming") rather than using prescribed formal languages.

3

	Typed Filesystem
	SVG Video Compression for Variable-Fidelity, Low-Bandwidth Video
	An Intentional Programming Framework for Programming and SWE Education

