MA347 - HW9

Jonathan Lam

February 25, 2021

1. Let G be a finite group. Assume $\operatorname{Aut}(G) = \{I_G\}$. Prove that G is abelian and $x^2 = e \ \forall x \in G$.

Proof. $\forall a \in G$, then the left conjugation map $c_a : G \to G$ defined by $c_a(x) = axa^{-1}$ lies in $\text{Inn}(G) \subseteq \text{Aut}(G) = \{I_G\} \Rightarrow c_a = I_G$. Thus, $\forall a, x \in G$:

$$I_G(x) = c_a(x)$$
$$x = axa^{-1}$$
$$xa = (axa^{-1})a$$
$$= ax(a^{-1}a)$$
$$= axe$$
$$= ax$$

Thus G is abelian.

The inverse map $f: G \to G$ defined by $f(x) = x^{-1}$ also lies in Aut $(G) = \{I_G\}$ (it is bijective since a group is closed over inverse and the inverse element is unique). Thus $f = I_G$, so $\forall x \in G$ $f(x) = x^{-1} = x = I_G(x) \Rightarrow e = xx^{-1} = x^2$.

2. Let G be a cyclic group and $f: G \to G'$ be a group homomorphism. Prove that f(G) is a cyclic subgroup of G'.

Proof. We proved in class that $f(G) \leq G'$ if f is a homomorphism, so we only need to show that f(G) is cyclic.

G is cyclic $\Rightarrow G = \langle a \rangle$ for some $a \in G$. Let $x' \in f(G)$. Then x' = f(x) for some $x \in G$, where $x = a^n$, $n \in \mathbb{Z}$. We also proved in class that $\forall b \in G, n \in \mathbb{Z}$ $f(b^n) = f(b)^n$ when given a group homomorphism *f*. Thus $x' = f(a^n) = f(a)^n$. Since every element of f(G) can be written in the form $x' = f(a)^n$, f(G) is a cyclic group generated by f(a).