MA347 - HW5

Jonathan Lam

February 4, 2021

1. Let G be a group and $a, b \in G$. Prove that $(aba^{-1})^n = ab^n a^{-1}$ for each $n \in \mathbb{N}$.

Proof. Let A(n) be the proposition that this equation is true when the exponent is n. A(1) is clearly true, since $(aba^{-1})^1 = aba^{-1} = ab^1a^{-1}$.

Assume that this is true for A(n) for some $n \in \mathbb{N}$. Then $(aba^{-1})^{n+1} = (aba^{-1})^n (aba^{-1}) = (ab^n a^{-1})(aba^{-1}) = ab^n (a^{-1}a)ba^{-1} = ab^n eba = ab^n ba = ab^{n+1}a$, where e is the unit element of G. Thus A(n) is true $\Rightarrow A(n+1)$ is true. By the first form of induction, A(n) is true $\forall n \in \mathbb{N}$. \Box

- 2. Let $\mathbb{K} = \mathbb{Q}, \mathbb{R}$, or \mathbb{C} . For each $a \in \mathbb{K}^n$ and $A \in \mathrm{GL}(n, \mathbb{K})$. Define $f_{A,a} : \mathbb{K}^n \to \mathbb{K}^n$ by $f_{A,a}(x) = Ax + a$.
 - (a) Prove that $f_{A,a}$ is a bijective map.
 - (b) Let $\operatorname{Aff}(n, \mathbb{K}) = \{f_{A,a} : A \in \operatorname{GL}(n, \mathbb{K}) \text{ and } a \in \mathbb{K}^n\}$. Prove that $\operatorname{Aff}(n, \mathbb{K})$ is a group under composition operation.
 - *Proof.* (a) Prove bijective by proving both one-to-one and onto. **Injectivity** Let $x, y \in \mathbb{K}^n$, and $f_{A,a}(x) = f_{A,a}(y)$. Then:

$$f_{A,a}(x) = Ax + a \Rightarrow x = A^{-1}(f_{A,a}(x) - a)$$
$$f_{A,a}(y) = Ax + a \Rightarrow y = A^{-1}(f_{A,a}(y) - a)$$
$$= A^{-1}(f_{A,a}(x) - a)$$
$$= x$$

 $f_{A,a}(x) = f_{A,a}(y) \Rightarrow x = y$, thus injective. Surjectivity Let $x \in \mathbb{K}^n$. Let $y = A^{-1}(z-a) \in \mathbb{K}^n$. Then

$$f_{A,a}(y) = A(A^{-1}(z-a)) + a$$

= $(AA^{-1})(z-a) + a$
= $I_n(z-a) + a$
= $(z-a) + a = z + (-a+a) = z + 0 = z$

Thus $\forall x \in \mathbb{K}^n$ there exists $y \in \mathbb{K}^n$ such that $f_{A,a}(y) = x$, thus surjective.

- (b) Show that $(Aff(n, \mathbb{K}), \circ)$ is a group by showing that it follows the group axioms:
 - **Associativity** Composition of mappings of a set onto itself is always associative. In particular, let $f_1, f_2, f_3 \in \text{Aff}(n, \mathbb{K})$. Let $x \in \mathbb{K}^n$. Then:

$$(f_1 \circ (f_2 \circ f_3))(x) = f_1((f_2 \circ f_3)(x))$$

= $f_1(f_2(f_3(x)))$
= $(f_1 \circ f_2)(f_3(x))$
= $((f_1 \circ f_2) \circ f_3)(x)$

Thus $f_1 \circ (f_2 \circ f_3) = (f_1 \circ f_2) \circ f_3$.

Identity element Let I_n denote the identity element of $GL(n, \mathbb{K})$, and 0_n denote the zero element of \mathbb{K}^n . Let $e = f_{I_n,0_n}$. Then for any $f_{A,a} \in Aff(n, \mathbb{K})$ and any $x \in \mathbb{K}^n$:

$$(e \circ f_{A,a})(x) = e(Ax + a)$$

= $I_n(Ax + a) + 0_n$
= $Ax + a + 0_n$
= $Ax + a$
= $f_{A,a}(x)$

and

$$(f_{A,a} \circ e)(x) = f_{A,a}(I_n x + 0_n)$$
$$= f_{A,a}(x + 0_n)$$
$$= f_{A,a}(x)$$

thus $e \circ f_{A,a} = f_{A,a} = f_{A,a} \circ e$ for any $f_{A,a} \in \operatorname{Aff}(n, \mathbb{K})$. **Inverse element** For any $f_1 = f_{A,a} \in \operatorname{Aff}(n, \mathbb{K})$, there exists $f_2 = f_{A^{-1}, -A^{-1}a} \in \operatorname{Aff}(n, \mathbb{K})$, and

$$(f_1 \circ f_2)(x) = f_1(A^{-1}x - A^{-1}a)$$

= $A(A^{-1}x - A^{-1}a) + a$
= $A(A^{-1}(x - a)) + a$
= $(AA^{-1})(x - a) + a$
= $I_n(x - a) + a$
= $(x - a) + a$
= $x + (-a + a)$
= $x + 0_n = I_nx + 0_n = e(x)$

and

$$(f_2 \circ f_1)(x) = f_2(Ax + a)$$

= $A^{-1}(Ax + a) - A^{-1}a$
= $A^{-1}(Ax) + A^{-1}a - A^{-1}a$
= $(A^{-1}A)x + A^{-1}(a - a)$
= $I_nx + A^{-1}(0_n) = I_nx + 0_n = e(x)$

Thus $\forall f_1 \in Aff(n, \mathbb{K})$, there exists $f_2 \in Aff(n, \mathbb{K})$ such that $f_1 \circ f_2 = e = f_2 \circ f_1$.

