MA347 - HW24

Jonathan Lam

May 5, 2021

1. Let R be a ring and $I \subseteq J \subseteq R$ where I and J are two-sided ideals. Prove that there is a (unique) ring homo. $\varphi: R/I \to R/J$ such that $\varphi(a+I) = a+J$.

Proof. First, we should show that φ is indeed a ring homo.

Let $a+I, b+I \in R/I$, where $a, b \in R$. The product and sum of these factor rings are well defined:

$$(a+I)(b+I) = a(b+I) + I(b+I)$$
 (rings are distributive)
 $= ab + aI + bI + II$ (rings are distributive)
 $= ab + I + I + II$ (I is two-sided ideal)
 $= ab + I$ ($II = I = I + I$)
 $(a+I) + (b+I) = a+b+I+I$ (additive group is abelian)
 $= (a+b) + I$

The fact that φ is a ring homomorphism follows naturally:

$$\varphi((a+I)(b+I)) = f(ab+I)$$

$$= ab+J$$

$$= (a+J)(b+J)$$

$$= \varphi(a+I)\varphi(b+I)$$

$$\varphi((a+I)+(b+I)) = \varphi((a+b)+I)$$

$$= (a+b)+J$$

$$= (a+J)+(b+J)$$

$$= \varphi(a+I)+\varphi(b+I)$$

$$\varphi(e) = \varphi(0+I)$$

$$= 0+J=e'$$

 $\therefore \varphi$ is a ring homo.

We should also show that φ is well-defined. Let a+I=b+I for $a,b\in R$. Then $a-b\in I\subseteq J\Rightarrow a+J=b+J$. Thus φ is well-defined.

This map is unique because if $\psi: R/I \to R/J$ is a ring homomorphism that maps $a+I \mapsto a+J$ for all $a+I \in R/I$, then $\psi=\varphi$.

2. Let R be an integral domain and $f: R \to R$ is a ring automorphism. Prove that there is a unique automorphism $f^*: K \to K$ of fields such that $f^*(r) = f(r) \ \forall r \in R$ where K is the quotient field of R.

Proof. This proof is identical to the textbook example on pages 103-4 of Lang (with some additional commentary), except that f is an automorphism rather than an embedding.

To show uniqueness, let $a \neq 0 \in R$. If f^* is a homo., then we must have:

$$1 = f^*(1) = f^*\left(\frac{1}{a}\frac{a}{1}\right) = f^*\left(\frac{1}{a}\right)f^*(a)$$
$$\Rightarrow f^*\left(\frac{1}{a}\right) = [f^*(a)]^{-1} = \frac{1}{f^*(a)}$$

Now, consider the fact that $f^*(r) = f(r) \ \forall r \in R$, i.e., that f^* extends f to its fraction field. Thus $\forall a, b \in R, b \neq 0$ we must have:

$$f^*\left(\frac{a}{b}\right) = f^*\left(\frac{a}{1}\frac{1}{b}\right) = f^*\left(a\right)\frac{1}{f^*(b)} = \frac{f^*(a)}{f^*(b)} = \frac{f(a)}{f(b)}$$

Thus the map f^* is uniquely determined by the effect of the map f on R. Also, it is clear that f^* is an extension of f: $\forall a = a/1 \in R \subseteq K$, then $f^*(a/1) = f(a)/f(1) = f(a)$.

To show that f^* is well-defined, let $x=a/b, y=c/d \in K$ for $a,b,c,d \in R$, and x=y. Then

$$f^*(x) = \frac{f(a)}{f(b)}, \qquad f^*(y) = \frac{f(c)}{f(d)}$$
$$x = y \Rightarrow ad = bc$$
$$f(a)f(d) = f(ad) = f(bc) = f(b)f(c) \Rightarrow f^*(x) = f^*(y)$$

Lastly, we need to show that f^* is indeed an automorphism, which was assumed up till now. Let $a, c \in R$, $b, d \in R^*$:

$$f^*\left(\frac{a}{b}\frac{c}{d}\right) = f^*\left(\frac{ac}{bd}\right) = \frac{f(ac)}{f(bd)} = \frac{f(a)f(c)}{f(b)f(d)}$$

$$= \frac{f(a)}{f(b)}\frac{f(c)}{f(d)}f^*\left(\frac{a}{b}\right) = f^*\left(\frac{c}{d}\right)$$

$$f^*\left(\frac{a}{b} + \frac{c}{d}\right) = f^*\left(\frac{ad + bc}{bd}\right) = \frac{f(ad + bc)}{f(bd)}$$

$$= \frac{f(a)f(d) + f(b)f(c)}{f(b) + f(d)}$$

$$= \frac{f(a)}{f(b)} + \frac{f(c)}{f(d)} = f^*\left(\frac{a}{b}\right) + f^*\left(\frac{c}{d}\right)$$

$$f^*\left(\frac{1}{1}\right) = \frac{f(1)}{f(1)} = \frac{1}{1} = 1$$

 $\therefore f^*$ is a homo.

To show that f is a ring auto., define a map $g^*: K \to K$ by $a/b \mapsto f^{-1}(a)/f^{-1}(b)$. Then, for $\forall a,c \in R$ and $b,d \in R^*$:

$$g^* \left(f^* \left(\frac{a}{b} \right) \right) = g^* \left(\frac{f(a)}{f(b)} \right) = \frac{f^{-1}(f(a))}{f^{-1}(f(b))} = \frac{a}{b}$$

$$f^* \left(g^* \left(\frac{a}{b} \right) \right) = f^* \left(\frac{f^{-1}(a)}{f^{-1}(b)} \right) = \frac{f(f^{-1}(a))}{f(f^{-1}(b))} = \frac{a}{b}$$

Thus $g^* \circ f^* = I_K = f^* \circ g^* \Rightarrow f^*$ is a bijective ring homomorphism from K to itself \therefore it is a ring isomorphism.