MA347 - HW23

Jonathan Lam

April 28, 2021

1. (a) Let I be an ideal of a commutative ring R. Prove that $\operatorname{ann}(I) = \{r \in R : ra = 0 \ \forall a \in I\}$ is an ideal of R.

Proof. Let $x_1, x_2 \in \operatorname{ann}(I), r \in R$. Then, $\forall a \in I$:

$$a(x_1 + x_2) = ax_1 + ax_2 = 0 + 0 = 0$$

and

$$a(rx_1) = r(ax_1) = r(0) = 0$$

 $\therefore x_1 + x_2 \in \operatorname{ann}(I), rx_1 = x_1 r \in \operatorname{ann}(I) \Rightarrow \operatorname{ann}(I)$ is a (two-sided) ideal. \Box

(b) Let $R = \mathbb{Z}/20\mathbb{Z}$ and $I = \{[n] \in R : n \text{ is even}\}$. Find $\operatorname{ann}(I)$. We use the looser notation $r \equiv [r] \in R$.

$$ann(I) = \{r \in \mathbb{Z}/20\mathbb{Z} : ra = 0 \ \forall a \in I\} \\ = \{r \in \mathbb{Z}/20\mathbb{Z} : ra = 0 \ \forall a \in \{0, 2, \dots, 18\}\} \\ = \{r \in \mathbb{Z}/20\mathbb{Z} : ra \equiv 0 \pmod{20} \ \forall a \in \{0, 2, \dots, 18\}\} \\ = \{r \in \mathbb{Z}/20\mathbb{Z} : 20 \ | \ ra \ \forall a \in \{0, 2, \dots, 18\}\}$$

Then $\operatorname{ann}(I)$ must be the ideal $\{0, 10\}$, because no other elements have exponent 2 in the additive group, and clearly $0a \equiv 0 \pmod{20}$, $10a \equiv 0 \pmod{20} \quad \forall a \in \{0, 2, \ldots, 18\}.$

2. Find all the ideals of a field F.

The trivial ideal $\{0\} \subseteq F$ is always an ideal.

Assume an ideal $J \subseteq F$ is non trivial. Let $0 \neq j \in J$. Since F^* is a group under product, $\exists r = j^{-1} \in R$. Since J is an ideal, $1 = j^{-1}j = rj \in R$. Then $\forall r \in R, r(1) \in J \Rightarrow R \subseteq J \subseteq R \Rightarrow J = R$.

 \therefore the only two ideals of F are the trivial ideal and F itself.