MA347 - HW22

Jonathan Lam

April 26, 2021

1. Prove that Q[v2] = {a + v/2b: a,b € Q} is an integral domain.

To show this, we must first show that R = Q[v/2] is a ring, and then that it
is a commutative ring with identity, and then that it has no zero divisors.

Proof. (R is a ring.) Let a = a; + V2a2,b = by + v2by € R, for
a1, as,b1,be € Q. Define the sum element-wise. Define the product by

~(a, b) =ab= (a1b1 + 2a2b2) + \/5(@1[)2 + a2b1)

Due to the closure of Q over product, (a1by + 2asbs), (a1bs + asb1) € R,
so ab € R.

R1 (R,+) is an abelian group due to the commutativity of the addition
of rational numbers. (Proof not shown here b/c trivial.)
R2 Leta = a1+\/§a2, b= b1+\/§b2, ¢ =c14+v2¢ € R, for ay,as,b1,bs,c1,c0 €
Q. Then:
(ab)c = ((a1b1 + 2a2b2) + \/§(a1b2 + agbl))c
= ((a1b1 + 2a2b2)(61) —+ 2(@1[)2 + azbl)(CQ))
+ \/5((0,11)1 + 2&21)2)(02) + (a1b2 + agbl)(cl))
= (0,1 (b101 + 2b262) + 2&2(b102 + bQCl))
+ \/§(a1<blcg + bgcl) + ag(blcl + 2b202))
= a((brc1 4 2baca) + V2(bica + bacy))
= a(bc)

.. product is associative.



R3 Let a,b,c € R as above. Then:
a(b+¢) = a((by + 1) + V2(bs + ¢2))

= (a1(b1 + 1) + 2a2(by + ¢2))
+V2(ay (b2 + c2) + az(by + c1))

= ((a1b1 + 2a2b2) + (a1¢1 + 2a2¢2))
+V2((arby + azby) + (a1c2 + ascy))

= ((a1by + 2a2b2) + V2(arby + azby))
+ (@12 + agcr) + \/§(a102 + azcy))

=ab+ ac

(The proof of right distributivity follows likewise due to the commu-

tativity and distributivity of Q.)
.. addition distributes over product.

R1, R2, R3 are satisfied .". R is a ring.

(Show that R is commutative and unital.) Use the commutativity of sum
and product in Q to show that product in R is commutative. Assume
a,b € R as previously:
ab = (a1b1 + 2&2[)2) + \/5(a1b2 + agbl)
= (b1a1 + 2b2a2) + \/§(b2a1 + blag)
= (b1a1 + 2b2a2) + \/5([)10,2 + bgal)
= ba
R has identity e = 1 + +/2(0), because Ya € R:
ea = (lay + 2(0)as) + \[2(1&2 +0a1) = a1 + V2as = a

and ea = a = ae because R is commutative.

(Show that R has no zero divisors.) Assume ab = 0 = 0+ +/2(0) for some
a,b € R and a nonzero.

ai1b; + 2asb9 =0

(a1by + 2a2bs) + V2(arby + asby) = 0+ V2(0) =
a1b2 + (12171 =0

a # 0 = aj,as are not both zero. Assume a1,b1,b2 # 0 (i.e., b # 0).
Then:
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which is a contradiction since ay = %m ZQ. Thusa; #0=5b=0.

Similarly, if we assume that as, b1, by # 0 (i.e., b # 0), then:
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which is again a contradiction because v/2 ¢ Q.

. ab =0,a #0 = b= 0. (Similarly, b # 0 = a = 0 because R is
commutative.) Thus R has no zero divisors. O



2. Let R be a commutative ring with identity. Let L, M, and N be (two-
sided) ideals. Prove that:

(a) M + N is a left ideal of R.

Proof. Let xt = mi+n; € M+N andr € R, formy,my € M,nqy,ng €
N. Then:

x4y =(mp+n1)+ (ma+ng)
= (m1 +mg) + (n1 + ng)
=m3+nzyseM+N
for mg € M,n3 € N, since M, N are ideals and thus closed over
addition. .. M 4+ N is closed over addition. We also have:
re =r(mp +nq)
=rmi + rneg
=my+ngs E M+ N
for my € M,ny € N, since M, N are ideals and closed over product

with an element of R. . M + N is closed over product with an
element of r.

. M+ N is a left ideal. (It is also a right ideal by the symmetric
argument.) O

(b) L(M + N) = LM + LN

Proof. Let l € L,m € M,n € N. By definition of product of ideals:

LM + LN = {Zlimi:li €L,m; eM,seZ+}

=1
t
{Zln :l; € L,n; € N,t ez+}

:{Zlmz—l—lnz lELmZEMnlENuEZJF}

{Zl (mi +n;) : 1 eLmZeMnleNueZJr}

=L(M+ N)

(Note that when we move from the two summations with upper limits
s and t to the single summation with upper limit w, we “fill in” the
missing terms with 0’s, since 0 € M, N.) O



(¢) LMCLNM

Proof. Let * = lm € LM, 1l € Lym € M. By definition of the
product of ideals:

LM = {Zzimi:zi e L,m; eM,neW}

=1

Since L is a right ideal, each term I;m; € L, and the linear combina-
tion lies in L. Similarly, since M is a left ideal, each term [;m; € M,
and the linear combination lies in M. Thus the linear combination
liesin LNM,so LM CLNM. U



