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1. Prove that Q[
√

2] = {a +
√

2b : a, b ∈ Q} is an integral domain.

To show this, we must first show that R = Q[
√

2] is a ring, and then that it
is a commutative ring with identity, and then that it has no zero divisors.

Proof. (R is a ring.) Let a = a1 +
√

2a2, b = b1 +
√

2b2 ∈ R, for
a1, a2, b1, b2 ∈ Q. Define the sum element-wise. Define the product by

·(a, b) = ab = (a1b1 + 2a2b2) +
√

2(a1b2 + a2b1)

Due to the closure of Q over product, (a1b1 + 2a2b2), (a1b2 + a2b1) ∈ R,
so ab ∈ R.

R1 (R,+) is an abelian group due to the commutativity of the addition
of rational numbers. (Proof not shown here b/c trivial.)

R2 Let a = a1+
√

2a2, b = b1+
√

2b2, c = c1+
√

2c2 ∈ R, for a1, a2, b1, b2, c1, c2 ∈
Q. Then:

(ab)c = ((a1b1 + 2a2b2) +
√

2(a1b2 + a2b1))c

= ((a1b1 + 2a2b2)(c1) + 2(a1b2 + a2b1)(c2))

+
√

2((a1b1 + 2a2b2)(c2) + (a1b2 + a2b1)(c1))

= (a1(b1c1 + 2b2c2) + 2a2(b1c2 + b2c1))

+
√

2(a1(b1c2 + b2c1) + a2(b1c1 + 2b2c2))

= a((b1c1 + 2b2c2) +
√

2(b1c2 + b2c1))

= a(bc)

∴ product is associative.
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R3 Let a, b, c ∈ R as above. Then:

a(b + c) = a((b1 + c1) +
√

2(b2 + c2))

= (a1(b1 + c1) + 2a2(b2 + c2))

+
√

2(a1(b2 + c2) + a2(b1 + c1))

= ((a1b1 + 2a2b2) + (a1c1 + 2a2c2))

+
√

2((a1b2 + a2b1) + (a1c2 + a2c1))

= ((a1b1 + 2a2b2) +
√

2(a1b2 + a2b1))

+ ((a1c2 + a2c1) +
√

2(a1c2 + a2c1))

= ab + ac

(The proof of right distributivity follows likewise due to the commu-
tativity and distributivity of Q.)

∴ addition distributes over product.

R1, R2, R3 are satisfied ∴ R is a ring.

(Show that R is commutative and unital.) Use the commutativity of sum
and product in Q to show that product in R is commutative. Assume
a, b ∈ R as previously:

ab = (a1b1 + 2a2b2) +
√

2(a1b2 + a2b1)

= (b1a1 + 2b2a2) +
√

2(b2a1 + b1a2)

= (b1a1 + 2b2a2) +
√

2(b1a2 + b2a1)

= ba

R has identity e = 1 +
√

2(0), because ∀a ∈ R:

ea = (1a1 + 2(0)a2) +
√

2(1a2 + 0a1) = a1 +
√

2a2 = a

and ea = a = ae because R is commutative.

(Show that R has no zero divisors.) Assume ab = 0 = 0 +
√

2(0) for some
a, b ∈ R and a nonzero.

(a1b1 + 2a2b2) +
√

2(a1b2 + a2b1) = 0 +
√

2(0)⇒

{
a1b1 + 2a2b2 = 0

a1b2 + a2b1 = 0

a 6= 0 ⇒ a1, a2 are not both zero. Assume a1, b1, b2 6= 0 (i.e., b 6= 0).
Then:

b1 = −2a2b2
a1

, b2 = −a2b1
a1

⇒ b1 =
2a22
a21

b1 ⇒
2a22
a21

= 1⇒ a2
a1

=
1√
2
⇒ a2 =

1√
2
a1
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which is a contradiction since a2 = 1√
2
a1 6∈ Q. Thus a1 6= 0⇒ b = 0.

Similarly, if we assume that a2, b1, b2 6= 0 (i.e., b 6= 0), then:

b2 = −a1b1
2a2

, b1 = −a1b2
a2

⇒ b2 =
a21
2a22

b2 ⇒
a21
2a22

= 1⇒ a1
a2

=
√

2⇒ a1 =
√

2a2

which is again a contradiction because
√

2 6∈ Q.

∴ ab = 0, a 6= 0 ⇒ b = 0. (Similarly, b 6= 0 ⇒ a = 0 because R is
commutative.) Thus R has no zero divisors.
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2. Let R be a commutative ring with identity. Let L, M , and N be (two-
sided) ideals. Prove that:

(a) M + N is a left ideal of R.

Proof. Let x = m1+n1 ∈M+N and r ∈ R, for m1,m2 ∈M,n1, n2 ∈
N . Then:

x + y = (m1 + n1) + (m2 + n2)

= (m1 + m2) + (n1 + n2)

= m3 + n3 ∈M + N

for m3 ∈ M,n3 ∈ N , since M,N are ideals and thus closed over
addition. ∴ M + N is closed over addition. We also have:

rx = r(m1 + n1)

= rm1 + rn2

= m4 + n4 ∈M + N

for m4 ∈ M,n4 ∈ N , since M,N are ideals and closed over product
with an element of R. ∴ M + N is closed over product with an
element of r.

∴ M + N is a left ideal. (It is also a right ideal by the symmetric
argument.)

(b) L(M + N) = LM + LN

Proof. Let l ∈ L,m ∈M,n ∈ N . By definition of product of ideals:

LM + LN =

{
s∑

i=1

limi : li ∈ L,mi ∈M, s ∈ Z+

}

+

{
t∑

i=1

lini : li ∈ L, ni ∈ N, t ∈ Z+

}

=

{
u∑

i=1

limi + lini : li ∈ L,mi ∈M,ni ∈ N, u ∈ Z+

}

=

{
u∑

i=1

li(mi + ni) : li ∈ L,mi ∈M,ni ∈ N, u ∈ Z+

}
= L(M + N)

(Note that when we move from the two summations with upper limits
s and t to the single summation with upper limit u, we “fill in” the
missing terms with 0’s, since 0 ∈M,N .)
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(c) LM ⊆ L ∩M

Proof. Let x = lm ∈ LM , l ∈ L,m ∈ M . By definition of the
product of ideals:

LM =

{
n∑

i=1

limi : li ∈ L,mi ∈M,n ∈ Z+

}

Since L is a right ideal, each term limi ∈ L, and the linear combina-
tion lies in L. Similarly, since M is a left ideal, each term limi ∈M ,
and the linear combination lies in M . Thus the linear combination
lies in L ∩M , so LM ⊆ L ∩M .
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