MA347 - HW21

Jonathan Lam

April 18, 2021

	1.	Let	G	be	a	group	of	order	91
--	----	-----	---	----	---	-------	----	-------	----

(a)	Prove that G has only one 7-Sylow subgroup H and only one 13-Sylow subgroup K .
	<i>Proof.</i> Using Sylow's third theorem, there are $m=1+7k$ 7-Sylow subgroups, $m \mid 91$, and there are $n=1+13k$ 13-Sylow subgroups $n \mid 91$. The only numbers that match these constraints are $m=1$ and $n=1$ ($k=0$ in both cases).
(b)	Prove that H, K are normal.
	<i>Proof.</i> Let G be a group, and P be the only p -Sylow subgroup. Let

Proof. Let G be a group, and P be the only p-Sylow subgroup. Let $g \in G$. Then the conjugate group gPg^{-1} also is a p-Sylow subgroup $(|gPg^{-1}| = |P|$ since conjugation is a bijection), and must equal P because it is the only p-Sylow subgroup. Thus $gPg^{-1} = P$ for all $g \in G$, so P is normal. (This proof is true more generally for the case of a unique subgroup of any order.)

Apply this result to H and K to show that they are normal. \square

(c) Prove that $H \cap K = \{e\}$.

Proof. H and K are both finite groups of prime order, so they are cyclic groups where each non-identity element has period matching the order of the subgroup. Thus no non-identity element can belong to both subgroups (no element can have period both 7 and 13), so the intersection is trivial.

(d) Prove that $hk = kh \ \forall h \in H, k \in K$, and that H, K are abelian.

Proof. $(hk = kh \ \forall h \in H, k \in K)$

Consider the element $hkh^{-1}k^{-1}$, $h \in H$, $k \in K$. $K \triangleleft G \Rightarrow hkh^{-1} = k_1 \in K$. $H \triangleleft G \Rightarrow kh^{-1}k^{-1} = h_1 \in H$. Then

$$kk_1 = hkh^{-1}k^{-1} = hh_1 \Rightarrow hkh^{-1}k^{-1} \in H \cap K = \{e\}$$

 $\therefore hk = kh.$

(H, K abelian) H and K are both finite groups of prime order. Thus it must be a (simple) (cyclic) abelian group (previous HW).

(e) Prove that G is cyclic and hence abelian.

Proof. Suppose $a = hk \in G$, where $h \in H$, $k \in K$, and $h, k \neq e$. Then h has period 7 and k has period 13. Since H and K are abelian, and since elements of H and K commute with each other, we can write $a^n = (hk)^n = h^nk^n$ (proof using induction is immediate).

We show that 91 is the period of a. It is an exponent of a because $a^{91} = h^{91}k^{91} = (h^7)^{13}(k^{13})^7 = e^{13}e^7 = ee = e$. It is the least positive exponent because for any 0 < n < 91, 7 and 13 do not both divide n, so h^n and k^n are not both e (nor are they inverses because $H \cap K = \{e\}$), and thus $a^n = h^n k^n \neq e$.

a generates a subgroup of G of order 91, so $G = \langle a \rangle$ and thus abelian.