MA347 - HW19

Jonathan Lam

April 8, 2021

1. Let A be an abelian group where $A = \mathbb{C}^*$ under product. Let p be a prime. Find A(p), the p-primary component of A. By definition,

$$A(p) = \left\{ x \in \mathbb{C}^* : \exists n \in \mathbb{Z}^+ \text{ s.t. } x^{(p^n)} = 1 \right\}$$
$$= \bigcup_{n=0}^{\infty} \left\{ x \in \mathbb{C}^* : x^{(p^n)} = 1 \right\}$$
$$= \bigcup_{n=0}^{\infty} \left\{ \exp \frac{2\pi i k}{p^n} : 0 \le k < p^n \right\}$$

This is the set of the zeroth/first root of 1 (1 itself), p-roots of 1, p^2 -roots of 1, p^3 -roots of 1, etc. Since each p^n -th root of 1 is also a p^m -th root of 1 if m > n, this is the set of " p^{∞} -th roots of 1."

(From a Google search, this group is called the Prüfer p-group $Z(p^{\infty})$.)

- 2. Let G be a group and $H \triangleleft G$. Prove that:
 - (a) If G is a p-group (for $p \in \mathbb{N}$ prime), then H is a p-group and G/H is a p-group.

Proof. By definition, a p-group has (finite) order p^n , $n \in \mathbb{Z}^+$. Then $|G| = p^a$, $a \in \mathbb{Z}^+$. We have:

$$|G| = (G:H)|H| = |G/H||H|$$

By the Fundamental Theorem of Arithmetic, p^a can only be the product of the form p^bp^c , for $0 \le b, c \le a$ and b+c=a. Thus H and G/H (a group because $H \triangleleft G$) are p-groups.

(b) If H and G/H are p-groups, then G is a p-group.

Proof. H is a p-group $\Rightarrow |H| = p^c$ for $c \in \mathbb{Z}^+$. G/H is a p-group $\Rightarrow |G/H| = (G:H) = p^b$ for $b \in \mathbb{Z}^+$. Then

$$|G| = (G:H)|H| = p^b p^c = p^{b+c}$$

The order of G is a power of p, so G is a p-group. \square