MA347 - HW17

Jonathan Lam

April 4, 2021

1. Let G be a group and H be a subgroup. Suppose for each $a, b \in G$ there exists $c \in G$ such that aHbH = cH. Prove that G/H, the set of left cosets of H in G, is a group.

Proof. The group operation is a binary (closed) operation by definition, since for all $x, y \in G$, $(xH)(yH) = xHyH = cH \in G/H$ for some $c \in H$.

GRP1 Product of (co)sets is always associative. Consider the product ((aH)(bH))(cH), where $a, b, c \in G$.

$$\begin{aligned} ((aH)(bH))(cH) &= \{ (a'b')c' : a' \in aH, b' \in bH, c' \in cH \} \\ &= \{ a'(b'c') : a' \in aH, b' \in bH, c' \in cH \} \\ &= (aH)((bH)(cH)) \end{aligned}$$

GRP2 Let $e' = H = eH \in G/H$, where e is the unit element of G. Then $\forall aH \in G/H$:

$$(aH)(H) = a(HH) = aH$$

Conversely, let $x \in H(aH)$. Then $x = h_1 a h_2$. In particular, let $h_1 = e \Rightarrow x \in aH$. We know that H(aH) is a left coset of H in G. Since left cosets form an equivalence relation over G, $x \in aH \Rightarrow H(aH)$ is precisely the coset aH.

 $(aH)e' = aH = e'(aH) \therefore e' = H$ is the unit element of G/H.

GRP3 Let $aH \in G/H$. Then $a^{-1}H \in G/H$. Then $(aH)(a^{-1}H)$ is a left coset of H in G. Let $x = ah_1a^{-1}h_2 \in (aH)(a^{-1}H)$. In particular, let $h_1 = e$. Then $x = aea^{-1}h_2 = aa^{-1}h_2 \in eH = H = e'$. Since left cosets form an equivalence relation over $G, x \in aH \Rightarrow (aH)(a^{-1}H)$ is precisely the coset H = e'.

The same argument can be used to show that $(a^{-1}H)(aH) = H = e'$. Thus an inverse element exists for each $aH \in G/H$.

This set of left cosets with the stated property is closed over the binary group operation and the group axioms are satisfied, so it is a group under product. $\hfill \Box$

- 2. Let G and G' be abelian groups and $f: G \to G'$ be a homomorphism. Assume there exists a homomorphism $g: G' \to G$ such that $f \circ g = I_{G'}$.
 - (a) Prove that $G = \operatorname{Ker} f \oplus \operatorname{Im} g$.

Proof. $(G = \operatorname{Ker} f + \operatorname{Im} g)$ Let $x \in G$. Then $y = g(f(x)) \in \operatorname{Im} g$. Let z = x - y. Then

$$f(z) = f(x - y) \qquad (\text{def. } z)$$

$$= f(x) - f(y) \qquad (f \text{ homo.})$$

$$= f(x) - f(g(f(x))) \qquad (\text{def. } y)$$

$$= f(x) - f(x) \qquad (f \circ g = I_{G'})$$

$$= e'$$

$$\Rightarrow z \in \text{Ker } f$$

Thus x = z + y for $z \in \text{Ker } f, y \in \text{Im } g$. $\therefore G = \text{Ker } f = \text{Im } g$.

(Ker $f \cap \text{Im } g = \{0\}$) Let $x \in \text{Ker } f \cap \text{Im } g$. Then $\exists y' \in G'$ such that $y = g(y') \Rightarrow f(y) = g(f(y')) = y' = 0' \Rightarrow y = g(y') = g(0') = 0.$ Thus Ker $f \cap \text{Im } g = \{0\}.$

$$G = \operatorname{Ker} f + \operatorname{Im} g, \operatorname{Ker} f \cap \operatorname{Im} g = \{0\} \Rightarrow G = \operatorname{Ker} f \oplus \operatorname{Im} g.$$

(b) Prove that f and g are inverse isomorphisms between the abelian groups g(G') and G'.

Proof. Restrict the domain of f and codomain of g to be the subgroup $g(G') \subseteq G$:

$$f: g(G') \to G'$$
$$g: G' \to g(G')$$

 $(g \circ f = I_{g(G')})$ Let $x \in g(G')$. Then x = g(x') for some $x' \in G'$, and

$$(g \circ f)(x) = g(f(x)) \tag{def. } \circ)$$

$$\begin{aligned} &(x) &= g(f(x)) & (\text{def. 6}) \\ &= g(f(g(x'))) & (x \in g(G')) \\ &= g(x') & (f \circ g = I_{G'}) \\ &= x & (x = g(x')) \end{aligned}$$

$$=g(x') \qquad (f \circ g = I_{G'})$$

$$= I_{g(G')}(x)$$
 (def. $I_{g(G')}$)

We have $f : g(G') \to G', g : G' \to g(G')$ homomorphisms, and $f\circ g=I_{G'}$ (given), $g\circ f=I_{g(G')}$ (just proved). .: f and g are inverse isomorphisms between G' and g(G').