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1. Let G be a group and H be a subgroup. Suppose for each a, b ∈ G there
exists c ∈ G such that aHbH = cH. Prove that G/H, the set of left cosets
of H in G, is a group.

Proof. The group operation is a binary (closed) operation by definition,
since for all x, y ∈ G, (xH)(yH) = xHyH = cH ∈ G/H for some c ∈ H.

GRP1 Product of (co)sets is always associative. Consider the product
((aH)(bH))(cH), where a, b, c ∈ G.

((aH)(bH))(cH) = {(a′b′)c′ : a′ ∈ aH, b′ ∈ bH, c′ ∈ cH}
= {a′(b′c′) : a′ ∈ aH, b′ ∈ bH, c′ ∈ cH}
= (aH)((bH)(cH))

GRP2 Let e′ = H = eH ∈ G/H, where e is the unit element of G. Then
∀aH ∈ G/H:

(aH)(H) = a(HH) = aH

Conversely, let x ∈ H(aH). Then x = h1ah2. In particular, let h1 =
e ⇒ x ∈ aH. We know that H(aH) is a left coset of H in G. Since
left cosets form an equivalence relation over G, x ∈ aH ⇒ H(aH) is
precisely the coset aH.

(aH)e′ = aH = e′(aH) ∴ e′ = H is the unit element of G/H.

GRP3 Let aH ∈ G/H. Then a−1H ∈ G/H. Then (aH)(a−1H) is a left
coset of H in G. Let x = ah1a

−1h2 ∈ (aH)(a−1H). In particular,
let h1 = e. Then x = aea−1h2 = aa−1h2 ∈ eH = H = e′. Since left
cosets form an equivalence relation over G, x ∈ aH ⇒ (aH)(a−1H)
is precisely the coset H = e′.

The same argument can be used to show that (a−1H)(aH) = H = e′.
Thus an inverse element exists for each aH ∈ G/H.

This set of left cosets with the stated property is closed over the binary
group operation and the group axioms are satisfied, so it is a group under
product.

1



2. Let G and G′ be abelian groups and f : G → G′ be a homomorphism.
Assume there exists a homomorphism g : G′ → G such that f ◦ g = IG′ .

(a) Prove that G = Ker f ⊕ Im g.

Proof. (G = Ker f + Im g) Let x ∈ G. Then y = g(f(x)) ∈ Im g. Let
z = x− y. Then

f(z) = f(x− y) (def. z)

= f(x)− f(y) (f homo.)

= f(x)− f(g(f(x))) (def. y)

= f(x)− f(x) (f ◦ g = IG′)

= e′

⇒ z ∈ Ker f

Thus x = z + y for z ∈ Ker f , y ∈ Im g. ∴ G = Ker f = Im g.

(Ker f ∩ Im g = {0}) Let x ∈ Ker f ∩ Im g. Then ∃y′ ∈ G′ such that
y = g(y′) ⇒ f(y) = g(f(y′)) = y′ = 0′ ⇒ y = g(y′) = g(0′) = 0.
Thus Ker f ∩ Im g = {0}.

G = Ker f + Im g,Ker f ∩ Im g = {0} ⇒ G = Ker f ⊕ Im g.

(b) Prove that f and g are inverse isomorphisms between the abelian
groups g(G′) and G′.

Proof. Restrict the domain of f and codomain of g to be the subgroup
g(G′) ⊆ G:

f : g(G′)→ G′

g : G′ → g(G′)

(g ◦ f = Ig(G′)) Let x ∈ g(G′). Then x = g(x′) for some x′ ∈ G′, and

(g ◦ f)(x) = g(f(x)) (def. ◦)
= g(f(g(x′))) (x ∈ g(G′))

= g(x′) (f ◦ g = IG′)

= x (x = g(x′))

= Ig(G′)(x) (def. Ig(G′))

We have f : g(G′) → G′, g : G′ → g(G′) homomorphisms, and
f ◦g = IG′ (given), g ◦f = Ig(G′) (just proved). ∴ f and g are inverse
isomorphisms between G′ and g(G′).
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