MA347-HW15

Jonathan Lam

March 28, 2021

(Problems II.§8.2, II.§8.3a from Lang)

1. Let $\pi : G \to \operatorname{Perm}(S)$ be a homo. where G is a group and S is a set. Prove that $\operatorname{Ker} \pi = \bigcap_{s \in S} G_s$ where G_s is an isotropy group of $s \in S$.

Proof. Let $K = \operatorname{Ker} \pi, H = \bigcap_{s \in S} G_s$ for convenience. $(K \subseteq H)$

$$K = \{x \in G : \pi(x) = I_S\}$$
$$= \{x \in G : xs = s \ \forall s \in S\}$$
$$= \{x \in G : x \in G_s \ \forall s \in S\}$$
$$\Rightarrow K \subseteq G_s \ \forall s \in S$$
$$\Rightarrow K \subseteq H$$

 $(H \subseteq K)$ Assume not. Then $\exists x \in G$ such that $x \in H$ and $x \notin K$. Then

$$\begin{aligned} x \notin K \Rightarrow x \notin \{x \in G : \pi(x) = I_S\} &= \{x \in G : xs = s \; \forall s \in S\} \\ \Rightarrow \exists s \in S \text{ such that } xs \neq s \\ \Rightarrow x \notin G_s \\ \Rightarrow x \notin H \\ \Rightarrow \text{ contradiction} \Rightarrow H \subseteq K \end{aligned}$$

 $K \subseteq H \subseteq K \Rightarrow K = H.$

2. Let G be a group of order p^n where p is prime and $n \in \mathbb{N}$. Prove that Z(G) is nontrivial, i.e., that |Z(G)| > 1.

By the class formula (Lang prop. 8.5), we have:

$$|G| = |Z(G)| + \sum_{i=1}^{m} (G : G_{y_i})$$

where $\{y_i\}_{i=1}^m$ represent the conjugacy classes which contain more than one element, and $(G: G_{y_i}) > 1$ for $i = \{1, \ldots, m\}$.

Since $|G| = (G : G_{y_i})|G_{y_i}|$, then $(G : G_{y_i})$ divides $|G| = p^n$, so $(G : G_{y_i}) = p^{r_i}$, where $1 \le r_i < n$ for all $i = \{1, \ldots, m\}$.

Using to the property that divisibility distributes over sums, we have:

$$p \mid |G|, p \mid (G:G_{y_i}) \forall i = \{1, \dots, m\}$$
$$\Rightarrow p \mid \left(|G| - \sum_{i=1}^m (G:G_{y_i}) = |Z(G)|\right)$$

Thus |Z(G)| is a (non-zero) multiple of p.