MA347 - HW14

Jonathan Lam

March 25, 2021

$$\text{Let }\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\ 13 & 2 & 15 & 14 & 10 & 6 & 12 & 3 & 4 & 1 & 7 & 9 & 5 & 11 & 8 \end{pmatrix}.$$

1. Write α as a product of disjoint cycles and find $|\alpha|$ (the period of α).

$$\alpha = \begin{pmatrix} 1 & 13 & 5 & 10 \end{pmatrix} \begin{pmatrix} 3 & 15 & 8 \end{pmatrix} \begin{pmatrix} 4 & 14 & 11 & 7 & 12 & 9 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 6 \end{pmatrix}$$
$$|\alpha| = \operatorname{lcm}\{4,3,6,1,1\} = 12$$

(The 1-cycles are decorative as they are equal to $\varepsilon,$ the identity map.)

2. Determine the sign of α .

Preliminary material: Using the notation from Lang, let $\epsilon: S_n \to \{1, -1\}$ denote the map from permutations of J_n to their sign. (-1 denotes an odd permutation, and 1 denotes an even permutation.) As noted in Thm. 6.4 of Lang, this is a group homomorphism.

Claim: an r-cycle is even iff. r is odd. I.e., $\epsilon(\sigma_r) = (-1)^{r+1}$, where σ_r is a r-cycle (problem II.§6.5 in Lang).

Proof. (Using induction) Let $\sigma = (i_1 \dots i_r)$ be an r-cycle. Let A(n) be the assertion that $\epsilon((i_1 \dots i_n)) = (-1)^{n+1}$, for $2 < n \le r$.

Base case (n = 2): A transposition (2-cycle) is odd. Thus A(2) is true.

Inductive step (n > 2, assume A(n - 1) is true): We have:

$$(i_1 \quad \cdots \quad i_n) = (i_1 \quad i_n) (i_1 \quad \cdots \quad i_{n-1})$$

Denote these as:

$$\sigma_n = \tau \sigma_{n-1}$$

We see this is true because σ_n and σ_{n-1} are almost the same, except that σ_{n-1} fixes n and $\sigma_{n-1}(i_{n-1}) = i_1$, while σ_n does maps $\sigma_n(i_{n-1}) = i_n$ and $\sigma_n(i_n) = i_1$. By composing τ with σ_{n-1} , we now have $(\tau \sigma_{n-1})(i_{n-1}) = \tau(i_1) = i_n$ and $(\tau \sigma_{n-1})(i_n) = \tau(i_n) = i_1$ while everything else is left unchanged, so $\tau \sigma_{n-1} = \sigma_n$.

Then by inductive hypothesis, $\epsilon(\sigma_{n-1}) = (-1)^n - (n-1)^n = (-1)^n$, and:

$$\epsilon(\sigma_n) = \epsilon(\tau \sigma_{n-1})$$

$$= \epsilon(\tau)\epsilon(\sigma_{n-1})$$

$$= (-1)\epsilon(\sigma_{n-1})$$

$$= (-1)(-1)^n$$

$$= (-1)^{n+1}$$

$$\therefore A(n-1) \Rightarrow A(n)$$
(ϵ is homo.)
(transposition is odd)
(by inductive hyp.)

By first form of induction, A(n) is true for all $n \in \mathbb{N}$ for $2 \le n \le r$. In particular having A(r) be true proves the claim.

To find the sign of α , use the fact that ϵ is a homomorphism to decompose the sign into the product of the signs of the component cycles, and then use the above result to calculate the sign of each of the component r-cycles.

$$\epsilon(\alpha) = \epsilon ((1 \quad 13 \quad 5 \quad 10) (3 \quad 15 \quad 8) (4 \quad 14 \quad 11 \quad 7 \quad 12 \quad 9))$$

$$= \epsilon ((1 \quad 13 \quad 5 \quad 10)) \epsilon ((3 \quad 15 \quad 8)) \epsilon ((4 \quad 14 \quad 11 \quad 7 \quad 12 \quad 9))$$

$$= (-1)(1)(-1) = 1$$

$$\therefore \alpha \text{ is even}$$