MA347 - HW13

Jonathan Lam

March 11, 2021

1. N and M are normal subgroups of a group G. Prove that NM is a normal subgroup of G.

Proof. Let $a, b \in NM$. Then $a = m_1 n_1$, $b = m_2 n_2$ for some $m_1, m_2 \in M$, $n_1, n_2 \in N$. Thus

$$ab^{-1} = (n_1 m_1)(n_2 m_2)^{-1}$$
$$= n_1 m_1 m_2^{-1} n_2^{-1}$$
$$= n_1 m_3 n_2^{-1}$$
$$= n_1 (m_3 n_2^{-1})$$

where $m_3 = m_1 m_2^{-1} \in M$. Since $M \triangleleft G$, then $m_3 n_2^{-1} \in M n_2^{-1} = n_2^{-1} M \Rightarrow \exists m_4 \in M \text{ such that } m_3 n_2^{-1} = n_2^{-1} m_4 \in M$. Substituting:

$$ab^{-1} = n_1(m_3n_2^{-1})$$

$$= n_1(n_2^{-1}m_4)$$

$$= (n_1n_2^{-1})m_4$$

$$= n_3m_4 \in NM$$

where $n_3 = n_1 n_2^{-1} \in N$. $\forall a, b \in NM \ ab^{-1} \in NM \Rightarrow NM \leq G$.

To show $NM \triangleleft G$, we show that $x(NH) = (NH)x \ \forall x \in G \ (\textbf{NOR1}).$

Suppose $xn_1m_1 \in x(NH)$, where $x \in G$, $n_1 \in N$, $m_1 \in M$. Using the property that $N \triangleleft G$. $xn_1 \in xN = Nx \Rightarrow \exists n_2 \in N$ such that $xn_1 = n_2x \in Nx$. Similarly, $\exists m_2 \in M$ such that $xm_1 = m_2x \in M_x$. Thus:

$$x(n_1m_1) \in x(NM)$$

= $(xn_1)m_1$
= $(n_2x)m_1$
= $n_2(xm_1)$
= $n_2(m_2x)$
= $(n_2m_2)x \in (NM)x$

Thus $x(NM) \subseteq (NM)x \ \forall x \in G$. Similarly, we can show that $(NM)x \subseteq x(NH) \Rightarrow (NM)x = x(NM) \ \forall x \in G$. $\therefore NM \triangleleft G$

- 2. Let G be a group and let S be the set of subgroups of G. Define, for H and K in S, $H \sim K$ iff. $\exists x \in G$ s.t. $xHx^{-1} = K$. (We say that H is conjugate to K if $H \sim K$.)
 - (a) Prove that \sim is an equivalence relation in S.

Proof. Reflexivity Let $H \in S$. Then $\exists x = e \in G$ s.t.

$$\begin{aligned} xHx^{-1} &= eHe^{-1} \\ &= (eH)e \\ &= He \\ &= H \end{aligned} \qquad \begin{aligned} (e \in H, \, hH = H \, \forall h \in H) \\ (e \in H, \, Hh = H \, \forall h \in H) \end{aligned}$$

 $\therefore H \underset{c}{\sim} H.$

Symmetry Let $H, K \in S, H \sim K$. Then $\exists x \in G \text{ s.t. } xHx^{-1} = K$. Then it is clear that $H = x^{-1}Kx = yKy^{-1}$. Thus $\exists y = x^{-1} \in G \text{ s.t. } yKy^{-1} = H \Rightarrow K \sim H$.

Transitivity Let $H, K, L \in S$, and $H \sim K, K \sim L$. Then $\exists x, y \in G$ s.t. $xHx^{-1} = K$ and $yKy^{-1} = L$. Then:

$$\begin{split} L &= yKy^{-1} \\ &= y(xHx^{-1})y^{-1} \\ &= (yx)H(x^{-1}y^{-1}) \\ &= (yx)H(yx)^{-1} \end{split}$$
 (See below comment)

(Comment: It is intuitive that $y(xHx^{-1})y^{-1}=(yx)H(x^{-1}y^{-1})$, but to explicitly show that this is not simply an abuse of notation: this holds true because each element is of the form $yxhy^{-1}x^{-1}$ where $h \in H$, which belongs to both sets.)

Thus
$$\exists z = yx \in G \text{ s.t. } zHz^{-1} = L \Rightarrow H \underset{c}{\sim} L.$$

 \sim is reflexive, symmetry, and transitive : equivalence relation. \Box

(b) Find the equivalence class $[H]_c$ of $H \in S$.

By definition, $[H]_c = \{K \in S : \exists x \in G \text{ s.t. } xHx^{-1} = K\}$. Another way to describe each $K \in [H]_c$ is that $K = c_x(H)$, i.e., the image of H under conjugation by x (for some $x \in G$). Since c_x is a bijective homomorphism, then $H \sim K$ implies that $H \simeq K$, so the equivalence class includes all subgroups of G isomorphic to H under the conjugation map.