MA347 - HW12

Jonathan Lam

March 9, 2021

- 1. Let G be a group. $a \in G$, $c_a : G \to G$ defined by $c_a(x) = axa^{-1}$. Then $c_a \in \operatorname{Aut}(G)$. $\operatorname{Inn}(G) = \{e_a : a \in G\}$ is a subgroup of G and $\varphi : G \to \operatorname{Aut}(G)$ defined by $\varphi(a) = c_a$ is a homo. Prove that:
 - (a) $Z(G) = \text{Ker } \varphi$ where Z(G) is the center of φ .

Proof.

$$\operatorname{Ker} \varphi = \{a \in G : \varphi(a) = e'\}$$
$$= \{a \in G : c_a = I_G\}$$
$$= \{a \in G : c_a(x) = I_G(x) \; \forall x \in G\}$$
$$= \{a \in G : axa^{-1} = x \; \forall x \in G\}$$
$$= \{a \in G : ax = xa \; \forall x \in G\}$$
$$= Z(G)$$

(b) $\text{Inn}(G) \triangleleft \text{Aut}(G)$. $(\text{Out}(G) \coloneqq \text{Aut}(G)/\text{Inn}(G)$ is called the outer automorphism group.)

Proof. Let K = Inn(G), H = Aut(G). We show the result by **NOR1**, i.e., that $xKx = K \ \forall x \in H$.

Let
$$h = c_a \in \text{Inn } G$$
. $x \circ h \circ x \in xHx^{-1}$. Then, $\forall y \in G$:

$$(x \circ h \circ x^{-1})(y) = (x \circ h)(x^{-1}(y))$$

= $x(ax^{-1}(y)a^{-1})$
= $x(a)x(x^{-1}(y))x(a^{-1})$ (x is home.)
= $x(a)I_G(y)x(a^{-1})$ (def. x^{-1})
= $(x(a))y(x(a))^{-1}$ (x is home.)
= $c_{x(a)}(y)$

thus $x \circ h \circ x \in H \Rightarrow xHx^{-1} \subseteq H$. Since $x^{-1} \in G$, $x^{-1}Hx \subseteq H \Rightarrow H \subseteq xHx^{-1}$. $\therefore xHx^{-1} = H$.

- 2. Let $H \leq G$. Define $N_H \coloneqq N(H) = \{x \in G : xHx^{-1} = H\}$. Prove that:
 - (a) xHx^{-1} is a subgroup of G.

Proof. Let $a, b \in xHx^{-1} \subseteq G$. Then $a = xh_1x^{-1}$, $b = xh_2x^{-1}$ for some $h_1, h_2 \in H$, and

$$ab^{-1} = (xh_1x^{-1})(xh_2x^{-1})^{-1}$$

= $(xh_1x^{-1})(xh_2^{-1}x^{-1})$
= $xh_1(x^{-1}x)h_2^{-1}x^{-1}$
= $xh_1h_2^{-1}x^{-1}$

Since H is a group and thus closed under the group operation and its inverse, $h_1h_2^{-1} = h_3 \in H$, and $ab^{-1} = xh_3x^{-1} \in xHx^{-1}$.

$$\therefore xHx^{-1} \le G.$$

(b) $N_H = N(H)$ is a subgroup of G and H is a normal subgroup of $N(H) = N_H$.

Proof. $(N_H \leq G)$ Let $a, b \in N_H \subseteq G$. Clearly $b^{-1} \in N_H$ as well since $bHb^{-1} = H \Leftrightarrow H = b^{-1}Hb$. Then aH = Ha and $b^{-1}H = Hb^{-1}$, and

$$\begin{aligned} (ab^{-1})H &= (aH)(b^{-1}H) & (\text{def. product of normal subgroups}) \\ &= (Ha)(Hb^{-1}) & (a,b^{-1}\in N_H) \\ &= H(ab^{-1}) & (\text{def. product of normal subgroups}) \end{aligned}$$

Thus $(ab^{-1})H(ab^{-1})^{-1} = H \Rightarrow ab^{-1} \in N_H.$

$$\therefore N_H \leq G.$$

Proof. $(H \triangleleft N_H)$ H is a group by hypothesis. If $h \in H \subseteq G$, then $hHh^{-1} = (hH)h^{-1} = Hh^{-1} = H \Rightarrow h \in N_H \Rightarrow H \subseteq N_H$. Thus $H \leq N_H$.

H is normal in N_H by definition of N_H , since $\forall x \in N_H \subseteq G$, $xHx^{-1} = H$ (**NOR1**).

(c) $H \triangleleft G \Leftrightarrow N_H = G$.

Proof. By **NOR1**, we have $N_H \triangleleft G \Leftrightarrow xHx^{-1} = H \forall x \in G$. This proves the claim both ways.

 (\Rightarrow) Let $H \triangleleft G$. Then we have $xHx^{-1} = x \forall x \in G$. Thus the condition for N_H is satisfied $\forall x \in G$, so $N_H = G$.

$$(\Leftarrow)$$
 Let $N_H = G$. Then $xHx^{-1} = H \ \forall x \in N_H = G \Rightarrow H \triangleleft G$.