MA347 – HW10

Jonathan Lam

February 27, 2021

Let $H \leq G$. Define $a \underset{H}{\sim} b$ iff. $b^{-1}a \in H$.

1. Prove that \sim_H is an equivalence relation on G and [a]=aH, the left coset of H by a.

Proof equivalence relation. Fix $H \leq G$.

Symmetry Let $a, b \in G$ and $a \sim_H b$. Then

$$a \underset{H}{\sim} b \Rightarrow b^{-1} a \in H$$
 (def. $\underset{H}{\sim}$)

$$\Rightarrow (b^{-1}a)^{-1} = a^{-1}b \in H$$
 (GRP 3)

$$\Rightarrow b \underset{H}{\sim} a \tag{def. } \underset{H}{\sim})$$

Reflexivity Let $a \in G$. Then $a^{-1}a = e \in H$ (GRP 1).

Transitivity Let $a,b,c\in G$, and $a\underset{H}{\sim} b,b\underset{H}{\sim} c$. Then:

$$\begin{split} a &\sim b \Rightarrow b^{-1}a \in H \\ b &\sim c \Rightarrow c^{-1}b \in H \\ &\Rightarrow (c^{-1}b)(b^{-1}a) \in H \\ &\Rightarrow c^{-1}(bb^{-1})a \in H \\ &\Rightarrow c^{-1}ea = c^{-1}a \in H \\ &\Rightarrow a &\sim c \end{split} \qquad \text{(group operation is associative)}$$

The relation $\underset{H}{\sim}$ is symmetric, reflexive, transitive \therefore equivalence relation.

Proof equivalence classes. We wish to show that

$$[a] = \{x \in G : a \underset{H}{\sim} x \Leftrightarrow x^{-1}a \in H\} = \{ah : h \in H\} = aH$$

Claim: $aH \subseteq [a]$. Proof: Let $x \in aH \Rightarrow x = ah$ for some $h \in H$. Then

$$\begin{split} a(a^{-1}h) &= (aa^{-1})h \\ &= eh = h \in H \\ &\Rightarrow x \underset{H}{\sim} a \Rightarrow a \underset{H}{\sim} x \Rightarrow x \in [a] \end{split}$$

Claim: $[a] \subseteq aH$. Proof: Let $x \in [a]$. Then

$$\begin{split} x \in [a] &\Rightarrow x \underset{H}{\sim} a \\ &\Rightarrow a \underset{H}{\sim} x \\ &\Rightarrow a^{-1}x = h \in H \\ &\Rightarrow a(a^{-1}x) = ah, \ h \in H \\ &\Rightarrow x = ah, \ h \in H \\ &\Rightarrow x \in aH \end{split}$$

Thus we have $aH \subseteq [a] \subseteq aH \Rightarrow aH = [a]$.

2. Let S/\sim be the set of equivalence classes w.r.t. \sim . Find S/\sim . We found the set of equivalence classes of S w.r.t. \sim in the previous question. Namely, this is the set of left cosets of H in G, i.e., $S/\sim = G/H$.