
ECE467 Final Project – Sentiment Analysis

Jonathan Lam, Derek Lee, Victor Zhang

May 11, 2021

1 Introduction

We are doing a sentiment analysis task on Twitter tweets. This was inspired
by the IEEE 2021 Global Student Challenge1, in which one challenge is to
“analyz[e] sentiments in tweets related to the COVID-19 pandemic.”

We chose to use the TensorFlow BERT uncased pre-trained model to perform
regression on a numerical sentiment value and classification on classes created
by binning those sentiment values. Our model is trained and evaluated on the
IEEE “Coronavirus (COVID-19) Geo-Tagged Tweets” dataset2.

2 Implementation Details

Our code can be found on GitHub at @jlam5555/nlp-sentiment-analysis.

2.1 Dataset

We chose an arbitrary dataset containing tweets related to COVID-19. From
the abstract pertaining to this particular dataset:

This dataset contains IDs and sentiment scores of geo-tagged tweets
related to the COVID-19 pandemic. The real-time Twitter feed is
monitored for coronavirus-related tweets using 90+ different key-
words and hashtags that are commonly used while referencing the
pandemic. Complying with Twitter’s content redistribution policy,
only the tweet IDs are shared.

This dataset contains approximately 360,000 tweets. We did not end up using
the geotags, instead focusing only on the tweet contents. (This is actually a
subset of a larger dataset3 containing over 1.2 billion tweets relating to COVID-
19, but we only discovered this later, and we figured that the geo-tagged tweets
dataset is large enough for our purposes.)

1https://www.computer.org/publications/tech-news/events/

global-student-challenge-competition-2021
2https://ieee-dataport.org/open-access/coronavirus-covid-19-geo-tagged-tweets-dataset
3https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset

1

https://github.com/jlam55555/nlp-sentiment-analysis
https://www.computer.org/publications/tech-news/events/global-student-challenge-competition-2021
https://www.computer.org/publications/tech-news/events/global-student-challenge-competition-2021
https://ieee-dataport.org/open-access/coronavirus-covid-19-geo-tagged-tweets-dataset
https://ieee-dataport.org/open-access/coronavirus-covid-19-tweets-dataset

As mentioned in the abstract, only the tweet IDs and sentiment labels were
provided. The tweets were grouped by day, but we ignored this (only taking
into account tweet contents). The tweet contents were fetched using the tweet
IDs and the Hydrator tool4, which uses the Twitter API v2.0 (which requires
a Twitter developer account). This returned a JSON file containing all of the
approximately 270,000 available (non-hidden and non-deleted) tweets as of April
25th, which forms our main dataset.

The main dataset is this dataset combined with the original labels, with all
of the extra metadata trimmed.

2.2 Preprocessing

The ALBERT (A Lite BERT) tokenizer is used for tokenization:

input_segments = [

tf.keras.layers.Input(shape=(), dtype=tf.string, name=ft)

for ft in sentence_features]

Tokenize the text to word pieces.

bert_preprocess = hub.load("http://tfhub.dev/tensorflow/albert_en_preprocess/3")

tokenizer = hub.KerasLayer(bert_preprocess.tokenize, name='tokenizer')

segments = [tokenizer(s) for s in input_segments]

2.3 Model

The inputs are the hydrated tweet strings (up to 280 characters). We are given
sentiment labels, which measure how positive the sentiment of a tweet is. Our
main model was composed of an ALBERT tokenizer followed by a BERT en-
coder.

We performed regression and classification on our dataset. For both of the
tasks, we used the main model and appended a few layers on top of it.

For the regression model, we appended a Dropout layer, a BatchNorm layer,
and 4 dense layers. For the classification model, we appended a BatchNorm
layer, 5 dense layers, and a softmax layer.

We used an 80/20 train/test split. We did not do any hyperparameter
tuning, so the test set was also used as the validation set to view the model’s
performance over the course of training.

2.3.1 Experimentation with network topologies

For regression, our original network comprised 3 dense layers with a single out-
put. Each dense layer used a ReLU activation. The first layer had a width of
128 nodes, the second 64 nodes, and the third 32 nodes (the final layer had 1
node representing the output).

4https://github.com/DocNow/hydrator

2

https://github.com/DocNow/hydrator

When training, we realized that the result had almost no variance in the
output, so the main goal following this was to try to improve the expressibility
of the model’s output. Almost all of the values outputted by the model were
very close to the mean sentiment value (around 0.11).

We made several attempts to improve the model’s expressibility (all to no
avail), including:

• Experimenting with the learning rate. One conjecture was that the model
wasn’t learning fast enough or was converging too quickly, so we tried sev-
eral builtin optimizers (Adam, SGD), learning rates (the default is 0.001,
so we tried 0.01 and 0.1), and learning rate scheduling (e.g., high learning
rate at the beginning followed by a lower learning rate, as suggested by
this paper).

• The encodings from the BERT encoder may not have enough variance –
this may be true if the tweets are considered fairly similar by BERT. We
tried using a BatchNorm layer to combat this.

• The model may simply not be large enough. We discovered that the
BERT encoding is a 768-length encoding, so even our largest first layer
was already constricting the network width. We tried expanding the width
and the depth of the layer, trying as wide and deep as a 1024×512×256×
128 × 64 × 1 network.

• After examining the distribution of the sentiment labels, we noticed that a
very large number of the examples were exactly zero, which likely caused
the model to train to roughly a constant value. We tried to combat this
by binning the labels into three roughly equal-sized categories and turning
the problem into a classification task. However, our results stayed at the
baseline levels (i.e., as if we had chosen to most likely category).

• Played around with different activations (e.g., PReLU, ELU), initializers
(glorot uniform, glorot normal, he uniform, he normal) in our despera-
tion.

For classification, our network comprised 4 dense layers with 3 output nodes.
Each dense layer used a ReLU activation. The first layer had a width of 512
nodes, the second 256, the third 128, the fourth 64 (the final layer had 3 nodes
representing each of the 3 classes).

When training, we encountered similar problems when we were training the
regression model. We made similar attempts to improve the model, but the
outputs of our model were completely uniform, classifying every input as the
most frequent class.

2.3.2 Other challenges

Training time is very slow with the BERT preprocessing and encoder layers.
Each training epoch takes roughly 1.5 hours, which means that we were not

3

https://arxiv.org/abs/1708.07120

Figure 1: Distribution of the labels. The sentiment labels are on the x-axis.
The frequency is on the y-axis. We decided to try binning the labels in order
to increase the “variance” of the output.

able to experiment with different models very quickly. Even when all of us were
training in parallel, it was hard to make much progress.

Another issue is that, just due to the complexity of TensorFlow, it’s difficult
to meaningfully “debug” the network. We speculate that our inputs may not
be well-suited for the BERT model – even though large neural language models
tend to work well on many NLP tasks, our dataset is fairly application-specific.
The distribution of the English language in tweets is probably very different
than that of the general English language. For example, many of the tweets
contained Unicode emojis, which may not have been tokenized properly by the
tokenizer.

3 Results

For both the regression and categorization tasks, the best results we got were
very close to the baseline. For regression, the best results were similar to the
sample mean. For classification, the best results were similar to the accuracy
if we tried to classify all inputs as the most frequent class. In other words,
our model trained to predict the average label with very little variance, which
(probably) indicates that there was a problem with the output of the BERT
encoder. (This is the same result that one would get if random inputs were fed
into a model.)

4

For the regression task, the theoretical baseline MSE (calculated over the
entire dataset if always predicting the mean value) is 0.0647. With any of our
models, we were able to achieve a 0.0644 MSE.

For the classification task, we binned the data into three bins: positive
(> 0.05), negative (< −0.05), and neutral. The bins had 33283, 100299, and
135927 examples, respectively; choosing the most probable bin (positive) yields
a 50.44% accuracy. We were able to achieve a 50.38% accuracy.

These numbers are close enough to the baseline values that it’s fairly obvious
that it’s predicting the average value (the slight variations are due to train/test
splits). When manually observing the predicted values on the test dataset, we
see that all of the values are closely clustered around the mean (in the regression
case) or are almost all positive (in the classification case).

4 Conclusion

We were not able to achieve state of the art results for the sentiment analysis
task. Our model was fairly simple and relied a lot on the BERT encoder and
preprocessing TensorFlow pretrained models for the NLP-theoretic part of the
project, but we probably implemented the encoder incorrectly. Our experimen-
tation with the network architecture were not able to give us good insight into
what our mistake was.

However, since the goal of this project was to learn how to use a deep learning
library such as TensorFlow to apply to a NLP task, we were at least able to
set up a runnable model and experiment with various model parameters, even
if they didn’t produce the results we intended to get.

5

	Introduction
	Implementation Details
	Dataset
	Preprocessing
	Model
	Experimentation with network topologies
	Other challenges

	Results
	Conclusion

