
ECE465 Checkpoint 2b

Distributed Graph Coloring

Jonathan Lam & Henry Son

February 21, 2021

Since the diagrams were written with TikZ, it was easier (and prettier) to
typeset everything in LATEX than convert and embed all the visuals into the
GitHub Markdown files. I’ll probably end up all of the reports (i.e., everything
but basic build instructions) over to LATEX because it looks nicer and has a
more academic feel.

1 Updates from Checkpoint 2a

The handshake was left mostly unchanged, as it was already working fine for
the first part. The algorithm was barely functional for the first part of the
assignment, so the main goal was to fix up these errors. This was two-fold:
fixing a issue that involved short writes, and synchronizing the start of an
iteration in the algorithm in a way that avoids a disastrous race condition.

Performance-wise, we did not have enough time to achieve a speedup over
single-node application. We spent much time on debugging (enough to start
jeopardizing other schoolwork) and were only barely able to finish making the
application run reliably.

There was also some general cleanup of code and adding additional features,
such as a quiet flag to suppress logging, and disabling printing of nodes (other-
wise the 10000 node graph generates a 2.5GB logfile). More details on the fixes
and performance issues follow the figures below.

2 Figures

See the following pages for details on the entire distributed algorithm. Note
that the terms “client” and “worker” are used interchangeably and refer to all
of the non-server nodes.

1

read in list
of clients

client1 init
on 10.0.0.1

client2 init
on 10.0.0.2

dial clients

inform
clients of
node id &
of nodes

inform
clients of

other client
IPs/ports

read in
graph file

partition
graph

send
subgraphs
to clients

listen for
messages

handshake
waitgroup

Wait()

coloring
finished

waitgroup
Wait()

done

listen
on :5000

listen
on :5000

begin coloring

begin coloring

contact
higher
nodes

receive
subgraph

handshake
waitgroup

Wait()

start algo
waitgroup

Wait()

distributed
coloring

algorithm

done

handshake complete

coloring done

contact
higher
nodes

receive
subgraph

handshake
waitgroup

Wait()

start algo
waitgroup

Wait()

distributed
coloring

algorithm

done

main algorithm

handshake complete

coloring done

establish connection

ID=1,N=2

ID=2,N=2

node 2 @10.0.0.2:5000

subgraph 1

subgraph 2

Figure 1: Communication protocol for the coloring algorithm for a two-worker network. Solid
and dashed lines represent intra- and inter-node (socket) communication, respectiely. Blue blocks
represents sequential code, green represents handlers to socket messages, and orange represents
waitgroup (semaphore) action.

server
node 0

client 1

client 2

client 3 client 4

client 5

client 6

Figure 2: Illustration of the node dialing order for a six-worker network. The server (“node 0”)
dials each worker node, informing them of their node ID (1-6), total number of nodes (7), and
the addresses (IP:port) of higher-indexed nodes. Each node then dials each of its higher-ordered
nodes until a complete graph of peer-to-peer (TCP socket) connections is formed. (This process is
relatively brief, so the imbalance is inconsequential.) Only then is the handshake complete.

begin
coloring

initialize
U ← Gi

U = ∅

done.
notify
other

nodes and
clean up

sync round
start

waitgroup
Wait()

partition
subgraph

speculative
coloring

in parallel

coloring
waitgroup

Wait()

reset
recoloring
set R = ∅

conflict
detection
in parallel

conflict
detection
waitgroup

Wait()

U ← R

listen on
all con-
nections

received
vertex info

updated
neighbor

color cache

received
node sync

notification

received
node done
notification

received
coloring
finished

notification

true

false

Figure 3: Detail of the “distributed coloring algorithm” block from Figure 1 for a single worker
node, based on the general framework proposed by Gebremedhin et al. (2005). The double-dashed
arrow represents the set of connections to all of the other nodes. The blocks that involve parallel
processing are indicated by a double border. The listener (the same listener set up during the
procedure) is in a separate goroutine and therefore will not block when the mainline is blocking on
a semaphore.

begin
speculative

coloring
of Uj

∀v ∈ Uj

reset
neighbor

colors
C = ∅

∀u adj. v

u ∈ U fetch cached
u color

C ←
C ∪{u.color}

v.color =
min{Z+−C}

∀u adj. v
u > v

notify
worker

containing
u of v’s

new color

done. notify
all nodes.
decrement

color
waitgroup

u

false

true

u

ε

v

ε

ε

(a) The speculative coloring algorithm for a single thread

begin
conflict

resolution
of Uj

∀v ∈ Uj

done.
decrement

conflict
resolution
waitgroup

∀u adj. v

u ∈ U
fetch

cached
u color

v.color =
u.color

R ←
R ∪ {v}

true

v

false

ε

ε

false

true

u

(b) The conflict detection algorithm for a single thread

Figure 4: Detail of the speculative coloring and conflict detection algorithms in Figure 3. Note
that the graph is first partitioned amongst the worker nodes G =

⋃
Gi. For a particular worker,

U represents the nodes to be colored and is set to Gi initially. It is then partitioned again into
U =

⋃
Uj , and thus we achieve a fairly high level of parallelization. This part of the algorithm is

not much different from the single-node variant, except that we require fetching cached color values
of neighbors that lie outside the current subgraph, and we have to notify worker nodes containing
neighbors of nodes that have been recolored. To reduce network I/O, we arbitrarily only notify the
higher-indexed neighbors when a node is colored (hence the u > v condition).

3 Fixing concurrency issues

3.1 Short writes

This was a tricky issue for a number of reasons:

• It’s not a common issue (it doesn’t appear anywhere on an Internet search)

• The write buffer was often not full.

• The listener (reader) thread doesn’t hang.

• The typical network socket buffer is large (16kB, according to man 7 tcp),
and substantially larger than the default buffer size for bufio.Writer

(4kB).

The only thing that did make sense was that a short write is a reasonable (?)
response for a FIFO like a network socket or a pipe, but it must not be common
on ordinary network sockets because an Internet issue doesn’t turn it up.

Painstaking debugging revealed that the short writes were really very ran-
dom and the buffer was not full at all, and it was due to concurrent calls to the
Write() method of the underlying socket which returned 0. This is solved by
making all writes to any particular network socket a critical section.

(Debugging first revealed the fact that a short write causes a bufio.Writer

to reject all future writes and maintain its error until a call to the writer’s
Reset() method is made, which also discards the buffer. Only when messing
around with this did the real culprit come up.)

3.2 Synchronizing the start of a coloring round

The code in Figure 5 shows the general distributed algorithm sequence, along
with the synchronization steps. The problem with this code is that colorWg

may be decremented before it is set. A possible series of events, assuming a
two-worker system is: the first node (node1) begins a round, and broadcasts
ROUND_SYNC, and then it sleeps on startWg.Wait(). The second node (node2)
begins a round, broadcasts ROUND_SYNC, receives node1’s ROUND_SYNC message
(releasing startWg), and doesn’t sleep on startWg.Wait() since the semaphore
is released. It (node2) continues on its mainline thread: it sets startWg and
colorWg to their appropriate values, performs its speculative coloring, broad-
casts SPEC_COLOR_DONE, and sleeps on colorWg.Wait(). Then, node1’s listener
thread receives the ROUND_SYNC message, freeing the startWg semaphore (but this
doesn’t cause the mainline thread to immediately wake/get scheduled in), and
it receives the SPEC_COLOR_DONE message, decrementing the colorWg semaphore
to -1. This is due to the fact that node1’s mainline thread still hasn’t woken
yet and set the colorWg semaphore appropriately, and the negative semaphore
raises a panic.

6

1 colorWg.Add(0)
2 startWg.Add(nNodes - 2)
3 U := G_i
4 while U is not empty:
5
6 // round sync
7 broadcast ROUND_SYNC message
8 startWg.Wait()
9

10 // these have to happen after
11 // startWg because we need to know
12 // how many nodes are left
13 startWg.Add(nNodes - 2)
14 colorWg.Add(nNodes - 2)
15
16 // perform speculative coloring ...
17 speculativeColor()
18 broadcast SPEC_COLOR_DONE message
19 colorWg.Wait()
20
21 // conflict detection
22 R := []
23 conflictDetection()
24 U = R
25
26 // node completely done
27 broadcast NODE_DONE message

(a) Mainline thread

1 function handler_ROUND_SYNC() {
2 startWg.Done()
3 }
4
5 function handler_NODE_DONE() {
6 nNodes = nNodes - 1
7 startWg.Done()
8 }
9

10 function handler_SPEC_COLOR_DONE() {
11 colorWg.Done()
12 }

(b) Listener thread

Figure 5: A seemingly innocuous bit of synchronization that caused a major
headache. Note that the number of nodes may decrease throughout the lifetime
of the algorithm (due to nodes completing before other nodes), so it is important
to count the number of ROUND_SYNC and NODE_DONE messages before setting the
semaphores for the round; thus lines 13 and 14 explicitly follow the startWg.
However, this causes problems: after startWg is released, the mainline thread
may not get scheduled in immediately; it is possible that the listener thread
may receive the SPEC_COLOR_DONE message and try to decrement colorWg before
it is set, which causes a negative WaitGroup error.

One proposed way around this is to set colorWg before startWg is released,
i.e., that ROUND_SYNC should increment colorWg in its handler, and this re-
places line 14 of the mainline. However, this causes the possible race condi-
tion: assuming a two-worker system, node1 can be sleeping on colorWg.Wait().
Node2 then finishes speculative coloring, releasing colorWg, but node1’s main-
line thread does not get scheduled in immediately. Node2 continues to run,
finishes the round, begins the next round, and broadcasts the ROUND_SYNC mes-
sage. Node1’s listener thread receives the message and decrements colorWg

(per the new change) to a value of 1. However, since the mainline thread hasn’t

7

woken yet, we are greeted with a error of “sync: WaitGroup is reused before
previous Wait has returned.”

A second proposed method to get around this is to perform locking of critical
sections (e.g., using mutexes) to try eradicate the mistiming issues. However,
no suitable way to do this was found that would block all mistimed WaitGroup
operations and not also deadlock the main thread.

A third proposed method was to use a series of ACK messages (similar to
TCP ACKs) to signal when a node is ready to accept WaitGroup operations.
However, this adds an additional layer of synchronization that slows down the
algorithm further and introduces an additional message type and handler, which
is a lot of complexity (and thus a decrease in maintainability).

The final (working) solution is based on the idea that the fault in the original
algorithm is simply due to a scheduling race condition. This solution involves
trying to decrement colorWg in the handler for SPEC_COLOR_DONE; if this opera-
tion fails, then we catch the panic (exception) and force Go to yield this thread
to the scheduler. This process is repeated as many times as necessary until the
operation succeeds, at which point we know that the main thread has updated
colorWg’s counter.

This method is a little tricky, since the only way to catch a panic is by a
deferred handler on the stack; this defer method has to be recursive but have
the proper break condition. The other tricky part is that when colorWg.Done()

causes the negative WaitGroup panic, it still decrements the pointer; so, to en-
sure consistency, colorWg must be (atomically) re-incremented to zero, or else
there might be problems on the mainline thread when it tries to correctly incre-
ment colorWg. Thus this introduces a critical section around the decrementing
of colorWg and around the setting of colorWg in the mainline thread.

The last step is to schedule out the offending thread if it panics (i.e., if it
runs too early). runtime.Gosched() does exactly this.

This last method is perhaps not great because it doesn’t avoid the error,
but instead it provides a sort of atomic “test and set” (TAS)-like functionality
by using a lock and a semaphore. The benefit is that it only requires an extra
mutex (one per socket connection) and, while it forces rescheduling (usually
an expensive operation), this is only the Goroutine scheduler (more lightweight
than the OS scheduler) and forces the correct (desired) scheduling order.

8

1 // recursive error recovery "trick" -- see documentation
2 var retry func()
3 retry = func() {
4 // consume error; keep retrying until success
5 if err := recover(); err != nil {
6
7 // if this happens, then lock already acquired
8 ws.ColorWg.Add(1)
9 ws.ColorWgLock.Unlock()

10
11 // algorithm is done, don’t need to continue listening
12 if ws.State == distributed.STATE_FINISHED {
13 return
14 }
15
16 defer retry()
17
18 // give control to someone else (hopefully the main worker
19 // thread)
20 runtime.Gosched()
21
22 // retry
23 ws.ColorWgLock.Lock()
24 ws.ColorWg.Done()
25 ws.ColorWgLock.Unlock()
26 }
27 }
28 defer retry()
29
30 logger.Printf("Node %d has finished a round.\n", nodeIndex[0])
31
32 // decrease the number of nodes we are waiting for
33 ws.ColorWgLock.Lock()
34 ws.ColorWg.Done()
35 ws.ColorWgLock.Unlock()

Figure 6: The fix to the synchronization problem. Note that this also requires
acquiring the ws.ColorWgLock for line 14 of 5 (and releasing it thereafter).

9

4 Performance issues

Mostly due to a lack of time, we haven’t been able to improve performance
by much. A 10000 vertex graph with an average degree of 1000, on a server
and four virtual clients running on the same machine, takes almost a minute
to color using the distributed algorithm, while it takes roughly 17ms using the
single-node, multi-threaded algorithm. This is due to the following reasons:

4.1 Unavoidable overhead from distributed algorithm

The biggest drawback of this algorithm is that the graph is now distributed
across the RAM of multiple nodes, meaning that efficient access to a node’s
neighbors (which is critical for this coloring algorithm) is much, much slower.
As a result, a good partitioning is highly important for performance.

There is also the overhead of requiring each node to be synchronized at
the start of each round, which waste CPU time. Logging also adds overhead.
Running all the clients on the same host probably causes a slowdown as well
due to sharing the same network interface.

4.2 Graph generation and partitioning

Real-world graphs tend to be very diverse in terms of vertex degree, and gen-
erally are heavily skewed with a large proportion of nodes having very small
degree. This also means that they can be efficiently partitioned in a way that
minimizes cross-edges between subgraphs. Gebremedhin et al. (2005) used
real-world graphs from a disease dataset and partitioned using the METIS
graph partitioning package, while our graphs were generated with a uniform
degree and partitioned into linear blocks. In other words, we performed no
optimization yet on minimizing internode I/O, and this means that much of
our algorithm time is probably stuck in networking time.

4.3 Increased vertex info buffering

Currently, due to the lack of an extra data structure to store multiple ver-
tices, vertices are sent and received one at a time. I/O speed can probably be
improved by sending and receiving in larger chunks.

5 Next steps

The next step is to move this onto a truly distributed system (multiple phys-
ical/virtual hosts rather than the same physical and virtual host) using AWS
infrastructure-as-code. This will provide the challenge of working with more nu-
merous but less-individually-powerful nodes (standard T2 instances are single-
threaded and are RAM-limited).

10

