
Edge Detection - Canny Filter Implementation

Jonathan Lam

May 10, 2021

1 Abstract

Edge detection is a common and important task in image processing. One
of the standard edge detection algorithms is the Canny edge detector, a six-
stage algorithm. We implement the the filter in CUDA C++ based on Luo
and Duraiswami [1] and a baseline CPU version. This paper describes the
theory behind the Canny filter, a naive approach covering all six stages, and
several optimizations based on Luo and Duraiswami’s work, along with relevant
code samples. We evaluate the performance of the different implementations
compared to one another on several test images.

2 Introduction

According to the MATLAB documentation1, “Edge detection is an image pro-
cessing technique for finding the boundaries of objects within images. It works
by detecting discontinuities in brightness. Edge detection is used for image
segmentation and data extraction in areas such as image processing, computer
vision, and machine vision. Common edge detection algorithms include Sobel,
Canny, Prewitt, Roberts, and fuzzy logic methods.”

We had originally decided to implement the Sobel filter, which comprises of
two (a horizontal and vertical) 3 × 3 differential filters. However, this proved
to be too simple for the purposes of this project, so we decided to attempt an
implementation of the Canny algorithm, which includes the Sobel filter as the
second step.

The Canny filter was developed by John Canny in 1986 [2]. It comprises six
steps:

1. turn the image into a single channel (grayscale)

2. applying a smoothing (denoising) filter

3. finding the intensity gradients and directions

4. non-maximum edge suppression (i.e., edge thinning)

1https://www.mathworks.com/discovery/edge-detection.html

1

https://www.mathworks.com/discovery/edge-detection.html

5. double-thresholding the remaining edges

6. edge tracking via hysteresis

The following sections will review the intuition and general method for each step.
A visual summary of the steps can be found in Figure 1; this is our reproduction
of the example provided on the Wikipedia page for the Canny filter2.

2.1 Grayscale

Edge detection depends only on the brightness gradients of the image, and not
on the color. If we begin with a color image, we must begin by converting it to
some grayscale variant. We use the luminance measure.

2.2 Smoothing filter

This is used as a method of edge control. We want to avoid spurious high-
frequency components from appearing as noise, while mostly preserving larger
(true) edge features. A common choice is a (2D circular) Gaussian blur with a
small blur radius. We use a Gaussian blur with standard deviation 2 for most
of our experiments, although this depends on the density of the details in the
image.

2.3 Finding the intensity gradients and directions

This is where the Sobel-Feldman (Sobel) filter comes in. The Sobel filters are
small, separable 3×3 filters that provide us with integral approximations of the
horizontal and vertical gradients of the intensity of the image.

Tx =

−1 0 1
−2 0 2
−1 0 1

 Ty =

−1 −2 −1
0 0 0
1 2 1

After finding the horizontal and vertical gradients, we find the (2D) image in-
tensity gradient via the following formula:

|G| =
√
G2

x +G2
y (1)

and we can find the direction of the gradient with:

6 G = arctan
Gy

Gx
(2)

2https://en.wikipedia.org/wiki/Canny_edge_detector

2

https://en.wikipedia.org/wiki/Canny_edge_detector

(a) Original image (b) Luminance operator

(c) Gaussian blur (d) Sobel filter

(e) Edge thinning (f) Double thresholding

(g) Finished canny

Figure 1: Canny edge detection stages. Zoom in for detail. Babujayan, CC BY
3.0, via Wikimedia Commons. 3

https://commons.wikimedia.org/wiki/File:Large_Scaled_Forest_Lizard.jpg
https://creativecommons.org/licenses/by/3.0
https://creativecommons.org/licenses/by/3.0

(a) σ = 1 (b) σ = 2

(c) σ = 3 (d) σ = 4

Figure 2: Effect of changing blur standard deviation on the same lizard image.
The blur size is dependent on the detail density (resolution) of the image. In-
creasing the blur size will decrease noise as well as the number of detected edges.
It may also be necessary to change the thresholds based on the blur size. σ = 2
was chosen as the default for our tests as that seemed to work fairly well for
reasonable resolutions.

4

2.4 Non-maximum edge suppression

The Sobel filter provides a fairly recognizable magnitude representation, but
Canny decided that a more accurate representation of “edges” are represented
by the zero-crossings of the second derivatives of the intensity gradients. This
step uses the angle calculated in the previous step and determines if a pixel is a
local maximum in of the directional intensity gradient (which corresponds to a
zero-crossing in the second derivative). Usually, to simplify this calculation, the
angle is quantized rounded into one of four angles {0, π/4, π/2, 3π/4}. (Note
that opposite angles are not distinguishable, i.e., 0 and π are considered the
same angle.) Values that are not local maxima are zeroed. The visual effect of
this is that the edges become thinner.

2.5 Double-thresholding

This step and the next are further used to suppress noisy pixels. We mark
remaining pixels above a high threshold as having a strong gradient, and mark
pixels between that threshold and a lower threshold as having a weak gradient.
Pixels with an intensity gradient lower than the lower threshold are zeroed.

2.6 Edge tracking via hysteresis

All weak pixels that are connected to a strong pixels are labeled strong. This
process iteratively until there are no remaining weak pixels connected to a strong
pixel. The end result of the Canny filter are the strong pixels, and the remaining
weak pixels are zeroed. The intuition behind this step is that the strong pixels
are already determined to be part of edges; the weak pixels, however, are more
likely to come from noise, and are more likely to come from an edge if they are
near other known edge pixels. This should be implemented via some sort of
BFS algorithm.

3 Implementation and Optimizations

Each of the above steps roughly corresponds to one CUDA kernel. We will
describe the näıve implementation and any optimizations performed for each
step.

The CUDA program was implemented and tested using CUDA 9.2 on a
GT 740, which has Compute Capability (CC) 3.0, on a Debian 10 computer
with an i7-2600 CPU. The limiting factor of the GT 740 is that it has 1GB
of VRAM, which caused out-of-memory (OOM) errors for images larger than
16k (15360 × 8640, or 132MP) – thus, our largest test cases are (roughly) 16k
images.

5

3.1 Image preprocessing

Images were read and written using libpng. The code to process (read, decode,
encode, write) the PNG files is courtesy of Guillaume Cottencau3.

Libpng is (probably) not very efficient and the code is not very flexible, but
it was simple enough for our needs.

3.2 Timing

A simple custom timer was written using the clock() function from the <clock.h>

STL header. To prevent asynchronous kernel invocations, cudaDeviceSynchronize()
was used when benchmarking the kernel elapsed times.

3.3 Grayscale

The grayscale operator is found in Figure 3. This uses the RGB-to-luminance
formula from ITU BT.6014.

I = 0.2989R+ 0.5870G+ 0.1140B (3)

The first implementation used floating-point calculations, using this formula
literally. Simply eliminating floating-point calculations as in Figure 3 reduced
runtime by about 30%. To reduce time even further, we can use even lower
precision, as color accuracy is not of utmost importance. Some other integral
approximations can be found on the Internet5.

3.4 Gaussian blurring

The convolution with the Gaussian blur is the slowest kernel. The original naive
implementation involves a 2D kernel loaded into global memory and convolved
at every pixel. The dimensions of the filter are determined by the blur standard
deviation, and is calculated as so:

H = d6σe+ 1

The (somewhat arbitrary) coefficient of 6 is to ensure that we capture enough
of the Gaussian’s filter; the +1 is used to make the filter an odd size to simplify
calculations. Note that with a (somewhat reasonable) blur size σ = 5, this
means that the filter is 31 × 31 = 961 pixels – this means 961 multiplications
(and 1922 global memory accesses in the naive version with the filter in global
memory) per thread.

The convolution then simply multiples pixels pointwise with the filter. There
is a translation happening that causes the convolution to be centered around
the image and not the filter (i.e., a “same” padding convolution). By moving

3http://zarb.org/~gc/html/libpng.html
4https://stackoverflow.com/a/596241
5https://www.programmersought.com/article/20584662327/

6

http://zarb.org/~gc/html/libpng.html
https://stackoverflow.com/a/596241
https://www.programmersought.com/article/20584662327/

__global__ void toGrayScale(byte *dImg, byte *dImgMono, int h, int w, int ch)

{

int ind, y, x;

y = blockDim.y*blockIdx.y + threadIdx.y;

x = blockDim.x*blockIdx.x + threadIdx.x;

if (y >= h || x >= w) {

return;

}

ind = y*w*ch + x*ch;

dImgMono[y*w + x] = (2989*dImg[ind] + 5870*dImg[ind+1]

+ 1140*dImg[ind+2])/10000;

}

// convert back from single channel to multi-channel

__global__ void fromGrayScale(byte *dImgMono, byte *dImg, int h, int w, int ch)

{

int ind, y, x;

y = blockDim.y*blockIdx.y + threadIdx.y;

x = blockDim.x*blockIdx.x + threadIdx.x;

if (y >= h || x >= w) {

return;

}

ind = y*w*ch + x*ch;

dImg[ind] = dImg[ind+1] = dImg[ind+2] = dImgMono[y*w + x];

}

Figure 3: Color-to-grayscale and grayscale-to-3 channel kernels.

7

__global__ void conv2d(byte *d1, byte *d3,

int h1, int w1, int h2, int w2)

{

int y, x, i, j, imin, imax, jmin, jmax, ip, jp;

float sum;

// infer y, x, from block/thread index

y = blockDim.y * blockIdx.y + threadIdx.y;

x = blockDim.x * blockIdx.x + threadIdx.x;

// out of bounds, no work to do

if (x >= w1 || y >= h1) {

return;

}

// appropriate ranges for convolution

imin = max(0, y+h2/2-h2+1);

imax = min(h1, y+h2/2+1);

jmin = max(0, x+w2/2-w2+1);

jmax = min(w1, x+w2/2+1);

// convolution

sum = 0;

for (i = imin; i < imax; ++i) {

for (j = jmin; j < jmax; ++j) {

ip = i - h2/2;

jp = j - w2/2;

sum += d1[i*w1 + j] * dFlt[(y-ip)*w2 + (x-jp)];

}

}

// set result

d3[y*w1 + x] = sum;

}

Figure 4: Naive convolution kernel

the kernel into constant memory, we get the (still naive) implementation found
in Figure 4. This simple optimization halved the runtime of the convolution
kernel, probably due to the fact that there were half as many global memory
accesses.

The first optimization we can make is to make the convolution a “tiled”
memory algorithm, in which we preload a section of the image into the block
shared memory so that we reduce the number of global memory accesses. How-
ever, we have to be careful to load all of the pixels necessary for the convolution:
the convolution for one block of pixels requires a surrounding “apron” of ad-
jacent pixels, as shown in Figure 5a. This means that each thread loads one
pixel, and some threads on the border of the thread block will be loading pixels
but not performing a filter calculation; or, conversely, each thread performs a
convolution operation but threads on the border of the thread block also load

8

adjacent apron pixels into shared memory. Either approach is fine, but we
chose the former for its simplicity. This means that in each thread block, some
threads are dedicated only to loading apron pixels. Now, each thread only per-
forms one global memory access; however, we need more threads (more blocks)
to process the image because not all threads are used anymore for calculating a
convolution. Each pixel is loaded from global memory up to nine times, a huge
improvement for larger kernels.

Note that having a large apron is wasteful; each apron pixel is loaded into
shared memory several times and the corresponding threads are inactive during
the filter computation. Thus, if the apron (filter) size is large relative to the
block size, this becomes increasingly inefficient. In the example shown in Figure
5b, only one-ninth of the pixels actually perform filter calculations, and each
pixel gets loaded from global memory exactly nine times. This is similar to the
case of a 31× 31 Gaussian filter in a 32× 32 thread block.

The solution to our woes is the fact that a 2D Gaussian convolution is
separable – we can decompose it into a vertical (1D) convolution followed by a
horizontal (1D) convolution. The reason for the efficiency is two-fold: firstly, we
only have to perform 2H rather than H2 mult-adds, because our filter is linear
(with the same length as the side-length of the 2D filter). Secondly, we only
need to worry about loading apron pixels along the convolution axis. Each apron
pixel gets loaded exactly twice from global memory. Furthermore, if we elongate
the block so that its dimension along the convolution axis is longer than in the
perpendicular direction, we can minimize the number of apron pixels loaded
into memory; this is shown in Figure 5c.

These principles were applied to result in the 1-D convolution kernel shown
in Figure 6. Only the horizontal filter is shown, but the same concept is applied
to create a vertical filter, and the two are performed in serial. For the horizontal
convolution, the block size is set to 16 × 64; for the vertical convolution, the
block size is set to 64× 16.

3.5 Sobel filter

The Sobel filter is simply a 2-D convolution, but it is a small fixed size (3× 3).
It is also separable into two linear filters (3 × 1 and 1 × 3), which reduces the
number of computations. Given the small filter size and the few global memory
accesses, we found that the optimizations did not help by much.

The naive version, shown in Figure 7, performed only slightly worse than
the version using shared memory and separable filters, shown in Figure 8. A
version using shared memory but without separating the filter, shown in Figure
9, performs slightly better than the separable version.

3.6 Non-maximum edge suppression and double-thresholding

The implementation for these two sections are fairly straightforward and can’t
be optimized much. They each require few global memory accesses, do not

9

(a) Visual of the convolution apron (b) An large (inefficient) apron

(c) Efficiency with a 1D convolution

Figure 5: Considerations with the convolution apron. Images source: [3].

10

__global__ void conv1dRows(byte *dIn, byte *dOut, int h, int w, int fltSize)

{

int y, x, as, i, j;

float sum;

__shared__ byte tmp[lbs*sbs];

as = fltSize>>1; // apron size

// infer y, x, from block/thread index

// note extra operations based on apron for x

y = sbs * blockIdx.y + ty;

x = (lbs-(as<<1)) * blockIdx.x + tx-as;

// load data

if (y<h && x>=0 && x<w) {

tmp[ty*lbs+tx] = dIn[y*w+x];

}

__syncthreads();

// perform 1-D convolution

if (tx>=as && tx<lbs-as && y<h && x<w) {

for (i = ty*lbs+tx-as, j = 0, sum = 0; j < fltSize; ++i, ++j) {

sum += dFlt[j] * tmp[i];

}

// set result

dOut[y*w+x] = sum;

}

}

Figure 6: Efficient 1-D convolution kernel

11

__global__ void sobel(byte *img, byte *out, byte *out2, int h, int w)

{

int vKer, hKer, y, x;

y = blockDim.y*blockIdx.y + threadIdx.y;

x = blockDim.x*blockIdx.x + threadIdx.x;

// make sure not on edge

if (y <= 0 || y >= h-1 || x <= 0 || x >= w-1) {

return;

}

vKer = img[(y-1)*w+(x-1)]*1 + img[(y-1)*w+x]*2 + img[(y-1)*w+(x+1)]*1 +

img[(y+1)*w+(x-1)]*-1 + img[(y+1)*w+x]*-2 + img[(y+1)*w+(x+1)]*-1;

hKer = img[(y-1)*w+(x-1)]*1 + img[(y-1)*w+(x+1)]*-1 +

img[y*w+(x-1)]*2 + img[y*w+(x+1)]*-2 +

img[(y+1)*w+(x-1)]*1 + img[(y+1)*w+(x+1)]*-1;

out[y*w+x] = out[y*w+x] = sqrtf(hKer*hKer + vKer*vKer);

out2[y*w+x] = (byte)((atan2f(vKer,hKer)+9/8*M_PI)*4/M_PI)&0x3;

}

Figure 7: Näıve Sobel convolution

cause any major branch diversions, and as a result take the least time of all the
kernels. See Figures 10 and 11 for the implementations.

3.7 Edge tracking via hysteresis

This method closely mirrors that of Luo and Duraiswami [1]. The general
idea is to emulate a BFS using tiled memory. What makes it difficult, as Luo
and Duraiswami point out, is that this is a nonlocal problem; unlike any of
the other kernels so far, one “strong” edge may affect a “weak” edge at an
arbitrary distance connected by some path. We follow the heuristic multi-pass
approach given by Luo and Duraiswami. The general idea is to introduce an
apron of width 1 so that a block can “discover” strong edges from adjacent
blocks. In each pass, the block performs a local iterative BFS, updating weak
edges connected to strong edges until there are no more remaining. After each
pass, the results are written back to global memory so they can be retrieved
by adjacent blocks in the next kernel invocation. A visual of the algorithm is
shown in Figure 12.

Like Luo and Duraiswami, we choose an arbitrary number of hysteresis
passes to perform (we perform five iterations). The effect of increasing the
number of passes is shown in Figure 13.

The abundant __syncthreads() usage is probably not optimal, but it was a
necessary workaround to prevent race conditions.

The initial implementation using global memory is shown in Figure 14. The

12

__global__ void sobel_sep(byte *img, byte *out, byte *out2, int h, int w)

{

int y, x;

// using int instead of byte for the following offers a 0.01s (5%)

// speedup on the 16k image -- coalesced memory?

int vKer, hKer;

__shared__ int tmp1[bs*bs], tmp2[bs*bs], tmp3[bs*bs];

y = (bs-2)*blockIdx.y + threadIdx.y-1;

x = (bs-2)*blockIdx.x + threadIdx.x-1;

// load data from image

if (y>=0 && y<h && x>=0 && x<w) {

tmp1[ty*bs+tx] = img[y*w+x];

}

__syncthreads();

// first convolution

if (ty>=1 && ty<bs-1 && tx && tx<bs) {

tmp2[ty*bs+tx] = tmp1[(ty-1)*bs+tx]

+ (tmp1[ty*bs+tx]<<1) + tmp1[(ty+1)*bs+tx];

}

if (ty && ty<bs && tx>=1 && tx<bs-1) {

tmp3[ty*bs+tx] = tmp1[ty*bs+(tx-1)]

+ (tmp1[ty*bs+tx]<<1) + tmp1[ty*bs+(tx+1)];

}

__syncthreads();

// second convolution and write-back

if (ty>=1 && ty<bs-1 && tx>=1 && tx<bs-1 && y<h && x<w) {

hKer = tmp2[ty*bs+(tx-1)] - tmp2[ty*bs+(tx+1)];

vKer = tmp3[(ty-1)*bs+tx] - tmp3[(ty+1)*bs+tx];

out[y*w+x] = sqrtf(hKer*hKer + vKer*vKer);

out2[y*w+x] = (byte)((atan2f(vKer,hKer)+9/8*M_PI)*4/M_PI)&0x3;

}

}

Figure 8: Sobel convolution using shared memory and separable filters

13

__global__ void sobel_shm(byte *img, byte *out, byte *out2, int h, int w)

{

int y, x;

int vKer, hKer;

__shared__ int tmp[bs*bs];

y = (bs-2)*blockIdx.y + threadIdx.y-1;

x = (bs-2)*blockIdx.x + threadIdx.x-1;

// load data from image

if (y>=0 && y<h && x>=0 && x<w) {

tmp[ty*bs+tx] = img[y*w+x];

}

__syncthreads();

// convolution and write-back

if (ty>=1 && ty<bs-1 && tx>=1 && tx<bs-1 && y<h && x<w) {

vKer = tmp[(ty-1)*bs+(tx-1)]*1 + tmp[(ty-1)*bs+tx]*2

+ tmp[(ty-1)*bs+(tx+1)]*1 + tmp[(ty+1)*bs+(tx-1)]*-1

+ tmp[(ty+1)*bs+tx]*-2 + tmp[(ty+1)*bs+(tx+1)]*-1;

hKer = tmp[(ty-1)*bs+(tx-1)]*1 + tmp[(ty-1)*bs+(tx+1)]*-1 +

tmp[ty*bs+(tx-1)]*2 + tmp[ty*bs+(tx+1)]*-2 +

tmp[(ty+1)*bs+(tx-1)]*1 + tmp[(ty+1)*bs+(tx+1)]*-1;

out[y*w+x] = sqrtf(hKer*hKer + vKer*vKer);

out2[y*w+x] = (byte)((atan2f(vKer,hKer)+9/8*M_PI)*4/M_PI)&0x3;

}

}

Figure 9: Sobel convolution using shared memory and 2D filter

14

__global__ void edge_thin(byte *mag, byte *angle, byte *out, int h, int w)

{

int y, x, y1, x1, y2, x2;

y = blockDim.y*blockIdx.y + threadIdx.y;

x = blockDim.x*blockIdx.x + threadIdx.x;

// make sure not on the border

if (y <= 0 || y >= h-1 || x <= 0 || x >= w-1) {

return;

}

// if not greater than angles in both directions, then zero

switch (angle[y*w + x]) {

case 0:

// horizontal

y1 = y2 = y;

x1 = x-1;

x2 = x+1;

break;

case 3:

// 135

y1 = y-1;

x1 = x+1;

y2 = y+1;

x2 = x-1;

break;

case 2:

// vertical

x1 = x2 = x;

y1 = y-1;

y2 = y+1;

break;

case 1:

// 45

y1 = y-1;

x1 = x-1;

y2 = y+1;

x2 = x+1;

}

if (mag[y1*w + x1] >= mag[y*w + x] || mag[y2*w + x2] >= mag[y*w + x]) {

out[y*w + x] = 0;

} else {

out[y*w + x] = mag[y*w + x];

}

}

Figure 10: Edge thinning kernel

15

#define MSK_LOW 0x0 // below threshold 1

#define MSK_THR 0x60 // at threshold 1

#define MSK_NEW 0x90 // at threshold 2, newly discovered

#define MSK_DEF 0xff // at threshold 2 and already discovered

// perform double thresholding

__global__ void edge_thin(byte *dImg, byte *out, int h, int w, byte t1, byte t2)

{

int y, x, ind, grad;

y = blockDim.y*blockIdx.y + threadIdx.y;

x = blockDim.x*blockIdx.x + threadIdx.x;

if (y >= h || x >= w) {

return;

}

ind = y*w + x;

grad = dImg[ind];

if (grad < t1) {

out[ind] = MSK_LOW;

} else if (grad < t2) {

out[ind] = MSK_THR;

} else {

out[ind] = MSK_NEW;

}

}

Figure 11: Double-thresholding kernel

16

(a) Hysteresis edge tracking within a block (BFS in shared
memory)

(b) Edge tracking across blocks (multiple passes)

Figure 12: Hysteresis algorithm. Images source: [1].

17

(a) 1 pass (b) 2 passes

(c) 3 passes (d) 4 passes

Figure 13: Effect of varying the number of hysteresis passes on the lizard image.
The green pixels indicate new strong edge pixels found in the current hysteresis
pass, and gray pixels indicate edges that were already marked strong before the
current pass. Very few edges are added after the third iteration. We chose five
iterations as the default for our tests.

18

tiled version is shown in Figure 15.

3.8 CPU implementation

The CPU implementation follows the same logic as the CUDA naive versions.
We cannot make some of the optimizations (e.g., shared memory – the CPU
cache is not large enough). Most of the algorithms were implemented on a
pixel-by-pixel basis by simply looping through every pixel with a double loop.

The main differences lie in the setup and the hysteresis algorithm. The CPU
version does not require copying the image buffer from host to device.

The hysteresis version is not performed in parallel passes like the CUDA
version for obvious reasons. Instead, a DFS is performed on each pixel. Since
this involves nonlocal memory that requires expensive synchronization between
blocks (i.e., writing to) on the CUDA version – this makes the speedup on the
hysteresis section the smallest of all of the kernels.

The only optimization that was performed on the GPU that could also be
performed on the CPU is the separable blurring filter, but that was not imple-
mented. This is left for future investigation.

4 Results

For testing, we mostly focused on four large images downloaded from the im-
age, which will henceforth be referred to as “lizard”6, “rocks”7, “moon”8, and
“skyline14k”9. Several scaled versions of the skyline image were also used.

As expected, the grayscale, edge thinning, and thresholding operators are
the quickest. These all involve a single linear pass over the data and only a
few memory accesses per pixel. The sobel and blurring operators take the most
time. These results can be seen in Tables 1 and 2. The mean time reduction
for the edge thinning and thresholding from the CPU to CUDA versions is 93%
and 86%, respectively.

The hysteresis operator is one of the faster operators for the CPU version,
while it is the slowest operator (counting overall time for five iterations of the
kernel) on the CUDA version. This is as expected: on the CPU, we have much
faster control flow operators and nonlocal caching using a DFS, However, in
CUDA, since each warp has to perform the same instruction, when any path
is being traced all of the other threads in the warp must remain idle until all
paths are traced. Additionally, we need multiple global memory write-backs
because edges may pass between thread block tile boundaries. As a result, the
CPU hysteresis is actually faster than the CUDA hysteresis for the smallest test
image (lizard), and on the same order of magnitude for the other three test
images.

6Babujayan, CC BY 3.0, via Wikimedia Commons.
7https://wallpapercave.com/w/wp1848524
8https://www.reddit.com/r/pics/comments/dszr27
9Kristoffer Trolle from Copenhagen, Denmark, CC BY 2.0, via Wikimedia Commons.

19

https://commons.wikimedia.org/wiki/File:Large_Scaled_Forest_Lizard.jpg
https://creativecommons.org/licenses/by/3.0
https://wallpapercave.com/w/wp1848524
https://www.reddit.com/r/pics/comments/dszr27
https://commons.wikimedia.org/wiki/File:Cityscape_and_skyline_by_the_Copenhagen_Lakes,_Denmark_-_(36018109956).jpg
https://creativecommons.org/licenses/by/2.0

// check and set neighbor

#define CAS(buf, cond, x2, y2, width) \

if ((cond) && (buf)[(y2)*(width)+(x2)] == MSK_THR) \

(buf)[(y2)*(width)+(x2)] = MSK_NEW

// perform one iteration of hysteresis

__global__ void hysteresis(byte *dImg, int h, int w, bool final)

{

int y, x;

__shared__ byte changes;

// infer y, x, from block/thread index

y = blockDim.y * blockIdx.y + threadIdx.y;

x = blockDim.x * blockIdx.x + threadIdx.x;

// check if pixel is connected to its neighbors; continue until

// no changes remaining

do {

__syncthreads();

changes = 0;

__syncthreads();

// make sure inside bounds -- need this here b/c we can't have

// __syncthreads() cause a branch divergence in a warp;

// see https://stackoverflow.com/a/6667067/2397327

// if newly-discovered edge, then check its neighbors

if ((x<w && y<h) && dImg[y*w+x] == MSK_NEW) {

// promote to definitely discovered

dImg[y*w+x] = MSK_DEF;

changes = 1;

// check neighbors

CAS(dImg, x>0&&y>0, x-1, y-1, w);

CAS(dImg, y>0, x, y-1, w);

CAS(dImg, x<w-1&&y>0, x+1, y-1, w);

CAS(dImg, x<w-1, x+1, y, w);

CAS(dImg, x<w-1&&y<h-1, x+1, y+1, w);

CAS(dImg, y<h-1, x, y+1, w);

CAS(dImg, x>0&&y<h-1, x-1, y+1, w);

CAS(dImg, x>0, x-1, y, w);

}

__syncthreads();

} while (changes);

// set all threshold1 values to 0

if (final && (x<w && y<h) && dImg[y*w+x] != MSK_DEF) {

dImg[y*w+x] = 0;

}

}

Figure 14: Näıve hysteresis using global memory

20

__global__ void hysteresis_shm(byte *dImg, int h, int w, bool final)

{

int y, x;

bool in_bounds;

__shared__ byte changes, tmp[bs*bs];

// infer y, x, from block/thread index

y = (bs-2)*blockIdx.y + ty-1;

x = (bs-2)*blockIdx.x + tx-1;

in_bounds = (x<w && y<h) && (tx>=1 && tx<bs-1 && ty>=1 && ty<bs-1);

if (y>=0 && y<h && x>=0 && x<w) {

tmp[ty*bs+tx] = dImg[y*w+x];

}

__syncthreads();

// check if pixel is connected to its neighbors; continue until

// no changes remaining

do {

__syncthreads();

changes = 0;

__syncthreads();

// if newly-discovered edge, then check its neighbors

if (in_bounds && tmp[ty*bs+tx] == MSK_NEW) {

// promote to definitely discovered

tmp[ty*bs+tx] = MSK_DEF;

changes = 1;

// check neighbors

CAS(tmp, 1, tx-1, ty-1, bs);

CAS(tmp, 1, tx, ty-1, bs);

CAS(tmp, x<w-1, tx+1, ty-1, bs);

CAS(tmp, x<w-1, tx+1, ty, bs);

CAS(tmp, x<w-1&&y<h-1, tx+1, ty+1, bs);

CAS(tmp, y<h-1, tx, ty+1, bs);

CAS(tmp, y<h-1, tx-1, ty+1, bs);

CAS(tmp, 1, tx-1, ty, bs);

}

__syncthreads();

} while (changes);

if (y>=0 && y<h && x>=0 && x<w) {

if (final) {

if (in_bounds) {

dImg[y*w+x] = MSK_DEF*(tmp[ty*bs+tx]==MSK_DEF);

}

} else {

dImg[y*w+x] = max(dImg[y*w+x], tmp[ty*bs+tx]);

}

}

}

Figure 15: Hysteresis using shared memory

21

We were able to achieve minor speedups with each of the optimizations. The
previously discussed results are the most optimized versions. Table 3 lists the
times of the less-optimized versions (except for the unoptimized blur kernel,
which will be discussed separately.) Switching the grayscale operator from us-
ing floating-point operations to integral ones caused a 26% decrease in kernel
time. Switching hysteresis to use shared memory caused a 52% speedup (this is
displayed visually in Figure 16a).

The speedup from the Sobel filter optimizations was milder, likely due to the
fact that it is already a relatively simple operator. Using shared memory (tiling)
with a separable filter is actually a little slower than using a non-separable filter,
most likely because of requiring two thread barriers rather than a single one.
The separable version offers a 7% time reduction, and the non-separable version
offers a 10% reduction over the naive implementation. See Figure 16b.

Lastly, an additional “optimization” to remove all cudaDeviceSynchronize()

calls was made to see the effect of these synchronization barriers. There is a
consistent but very small effect (on the order of thousandths of seconds for each
test image).

In Tables 4 and 5, we see that the times scale very linearly with the number
of pixels in the image. (This is true for all but the CPU blur filter, which will
be discussed in the following paragraph.) This is shown visually in Figure 16d.

The largest speedup by far was achieved in the blur filter, not least because
it involves the most computations and is the slowest kernel in general. Table 6
and Figure 16c demonstrates the quadratic growth of the non-separable version
as the blur size increases, as opposed to the linear growth with the separable
version. For most of our tests, the blur size had σ = 2, at which the time
spent is reduced on average by 82%. For σ = 5, the reduction is 93%. (The
(normalized) time reduction is unbelievably consistent, varying by less than 1%
– what appears to be two lines in Figure 16c is actually 8 lines, with each of the
four images represented.)

The CPU version implements the naive blur and thus is also clearly quadratic.
For σ = 2 (H = 13, which means 169 memory accesses and mult-adds per pixel),
the naive CUDA version (using the same algorithm) offers a 99.3% time reduc-
tion, and thus the optimized CUDA version offers a 99.98% speedup. Since the
overall time (for the CPU version) is dominated by the blurring time, the overall
time reduction for the images is also over 99%.

In Table 7, the images produced by the CPU and CUDA versions are com-
pared. The resulting accuracy metric is simply the percentage of pixels that
match in the final image. Some of the smaller images report a larger error mar-
gin; this is probably due to the fact that the boundary pixels are not properly
accounted for in either of the latest implementations during the convolutions.
This should be fixed for a future comparison. Much of the remaining differences
should result from hysteresis, as this is the only non-deterministic algorithm
(in the CUDA version only, as it depends on which warps get scheduled to run
first). However, the numbers are generally high enough to indicate that most
pixels were the same; the mean accuracy over the test images is roughly 99%.

22

image lizard rocks moon skyline14k

width 4444 7680 14694 14091
height 3136 4320 8266 9394

pixels (MP) 13.94 33.1776 121.46 132.37

blur 16.392047 38.991000 144.943194 158.283468
sobel 0.503448 1.370735 4.346238 5.109478

edgethin 0.127931 0.392264 1.259965 1.390145
threshold 0.044430 0.096321 0.345455 0.407205
hysteresis 0.039386 0.154966 0.443695 0.559849

overall 17.294973 41.319512 152.664951 167.053442

Table 1: CPU timings for processing the same images as in Table 2.

image lizard rocks moon skyline14k

gray 0.007841 0.017504 0.068982 0.073921
blur (separable) 0.024333 0.057933 0.207798 0.225898

sobel (shared mem) 0.019585 0.052028 0.201424 0.203151
edgethin 0.009991 0.024648 0.090547 0.098592

threshold 0.005778 0.013698 0.049114 0.054493
hysteresis (shared mem) 0.008176 0.017076 0.058182 0.068109

hyst total 0.040881 0.085383 0.290910 0.340547
overall 0.117525 0.270621 0.983041 1.076650
nosync 0.116558 0.267512 0.979548 1.071600

Table 2: GPU kernel and overall timings for optimized kernels on four test
images. For these tests, the following hyperparameters were used: blur σ = 2,
threshold 1=0.2, threshold 2=0.4, and 5 hysteresis passes. Additionally, the
nosync row indicates the overall time if no cudaDeviceSynchronize() calls were
made; the effect of cudaDeviceSynchronize() is fairly negligible.

image lizard rocks moon skyline14k

gray (fp) 0.010738 0.023893 0.092579 0.100435
sobel (naive) 0.022106 0.056393 0.225306 0.222554

sobel (separable) 0.020585 0.052922 0.206515 0.210145
hysteresis (naive) 0.016735 0.034941 0.120156 0.139790

hyst total 0.083675 0.174705 0.600781 0.698950

Table 3: GPU kernel timings for unoptimized kernels on the same four test
images. The same canny parameters were used.

23

image skyline500 skyline1000 skyline2.5k skyline5k skyline10k skyline14k

width 500 1000 2500 5000 10000 14091
height 333 667 1667 3334 6667 9394

pixels (MP) 0.17 0.67 4.17 16.67 66.67 132.37

blur 0.193700 0.779473 4.867015 19.478580 79.527461 158.283468
sobel 0.006869 0.027894 0.149842 0.584700 2.346041 5.109478

edgethin 0.001850 0.007012 0.039814 0.154795 0.613782 1.390145
threshold 0.000578 0.002514 0.012705 0.048452 0.189971 0.407205
hysteresis 0.001592 0.006575 0.022750 0.079599 0.293580 0.559849

overall 0.206662 0.830951 5.131639 20.503200 83.607380 167.053442

Table 4: CPU timings for processing the same images as in Table 5.

image skyline500 skyline1k skyline2.5k skyline5k skyline10k skyline14k

gray 0.000265 0.000737 0.002767 0.009557 0.035608 0.073921
blur 0.000756 0.001451 0.007824 0.029554 0.113994 0.225898

sobel 0.000299 0.001084 0.006579 0.025391 0.101429 0.203151
edgethin 0.000385 0.000772 0.003750 0.012856 0.049072 0.098592

threshold 0.000321 0.000521 0.001737 0.007436 0.027187 0.054493
hysteresis 0.000243 0.000551 0.002589 0.009209 0.034696 0.068109

hysteresis total 0.001217 0.002757 0.012947 0.046046 0.173481 0.340547
overall 0.003606 0.008689 0.039141 0.141744 0.539666 1.076650

Table 5: GPU kernel timings for optimized kernels on the same image at six
resolutions.

24

image lizard rocks moon skyline14k

naive σ = 1 0.048326 0.115943 0.421206 0.456401
naive σ = 2 0.132040 0.313778 1.153320 1.254950
naive σ = 3 0.277972 0.658977 2.413430 2.624620
naive σ = 4 0.473423 1.119180 4.125480 4.493010
naive σ = 4 0.707206 1.691080 6.175220 6.761020

separable σ = 1 0.018326 0.042776 0.157439 0.169571
separable σ = 2 0.024333 0.057933 0.207798 0.225898
separable σ = 3 0.029375 0.068700 0.249971 0.274145
separable σ = 4 0.037768 0.088535 0.325202 0.355358
separable σ = 5 0.049688 0.117644 0.426353 0.465503

Table 6: Comparison of timings for the naive and optimized Gaussian convolu-
tions on the four test images for different blur standard deviations.

image lizard moon rocks skyline14k

accuracy 0.9767 0.994778 0.988704 0.994285

image skyline500 skyline1k skyline2.5k skyline5k skyline10k

accuracy 0.968613 0.978121 0.985476 0.990231 0.992143

Table 7: Percent of pixels matching from CPU and GPU versions

25

(a) Comparison of normalized kernel times of the two hys-
teresis implementations.

(b) Comparison of normalized kernel times of the three Sobel
filter implementations. The two optimized version perform
very similarly, but the non-separable one probably wins out
due to having fewer synchronization barriers.

(c) Comparison of the normalized kernel times of the two
(Gaussian) convolution implementations, shown over several
standard deviations σ = {0, 1, 2, 3, 4, 5}. Not only does the
separable filter beat the 2D filter by a large margin, but it
scales linearly with blur size rather than quadratically.

(d) Timings of the different kernels on images of different
sizes. All of the kernel timings grow linearly w.r.t. the num-
ber of pixels in the image, as expected. This is performed on
six different resolutions of the cityscape image with the same
Canny parameters.

Figure 16: Result of optimizing kernels, and overall scalability. (a), (b), and (c)
are normalized by the number of pixels in the image. (d) is shown on a log-log
scale and demonstrates that all of the algorithms scale linearly with number of
pixels (this allows us to normalize by pixels count and get similar results).

26

5 Conclusion

We were able to achieve a 99.4% speedup using optimized CUDA C++ over
a naive implementation on the CPU written in C on four large test images.
Simply by converting what would a pixel-by-pixel algorithm to a parallel kernel
offered over 90% time reduction for all kernels except hysteresis. Most of the
time reduction came from the blurring kernel; the naive version achieved a 99.3%
time reduction and the optimized version caused a 99.98% time reduction. As
expected, the hysteresis kernel runtime is comparable to that of the CPU version,
because of the nonlocal memory accesses and complex nonuniform branching
requirements.

For future research, we may attempt separating the blur kernel for the CPU
in the same manner as for CUDA. Further optimizations for the CUDA version
may include optimizing for the capabilities of the device (our target was the GT
740, but its capabilities may be different from newer NVIDIA processors) and
accounting for memory coalescence by properly aligning tiles. It may also be a
good idea to test this against comparable versions written in OpenCV/OpenCL
and MATLAB; Luo and Duraiswami [1] perform tests against OpenCV and
MATLAB, but the hardware capabilities and software improvements (e.g., the
introduction of OpenCL) since then have greatly changed.

References

[1] Yuancheng Luo and Ramani Duraiswami. Canny edge detection on nvidia
cuda. In 2008 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops, pages 1–8. IEEE, 2008.

[2] John Canny. A computational approach to edge detection. IEEE Transac-
tions on pattern analysis and machine intelligence, (6):679–698, 1986.

[3] Victor Podlozhnyuk. Image convolution with cuda. NVIDIA Corporation
white paper, June, 2097(3), 2007.

27

	Abstract
	Introduction
	Grayscale
	Smoothing filter
	Finding the intensity gradients and directions
	Non-maximum edge suppression
	Double-thresholding
	Edge tracking via hysteresis

	Implementation and Optimizations
	Image preprocessing
	Timing
	Grayscale
	Gaussian blurring
	Sobel filter
	Non-maximum edge suppression and double-thresholding
	Edge tracking via hysteresis
	CPU implementation

	Results
	Conclusion

