
SSSSS: Seventies-Style Sight and Sound System

Jonathan Lam (lam12@cooper.edu)
Steven Lee (lee70@cooper.edu)

The Cooper Union for the Advancement of Science and Art
ECE394 Electrical and Computer Engineering Projects II

Prof. Stuart Kirtman

May 14, 2021



1 Abstract

The color organ is an electronic speaker for music that has colored lights cor-
responding that light up based on the the frequency of an audio signal. The
goal of this project is to implement a simple color organ with three frequency
ranges: bass (225-450Hz), midrange (1000-1500Hz), and treble (4800-5500Hz).

2 Introduction

As described in the abstract, a color organ is a device that can detect different
frequencies and light up different LEDs based on its input.

Color organ, a device that allows people to enjoy both music and make an
relation with color was a creative invention during the 18th century for people
to enjoy music1. Even though it was all manual at the time, it was a big hit
and people loved associating the two together. Fast forward to the late 1960s,
color organ showed up as a different form, with the ability to detect different
frequency/amplitude to show different colors and making it a lot more easier to
operate.

3 Block diagram

The block diagram is shown in Figure 1. The project comprised two major
components: amplifying the signal enough to power an 8 Ω speaker, and filtering
the signal into the respective bands. These will be described later in greater
detail.

4 Schematic diagrams

4.1 Filter design

We have constructed three active bandpass filters for the design, where each one
would be detecting a different frequency. The formula we use to determine this
is:

ωc =
1

2πfc
(1)

The schematics for each filter are shown in Figure 2.

1https://en.wikipedia.org/wiki/Color_organ

2

https://en.wikipedia.org/wiki/Color_organ


Figure 1: Block diagram of the overall color organ

4.2 Volume control and power amplification

For volume control, we use a simple inverting amplifier, where the feedback
resistance is a 50 kΩ varistor. The gain for this is:

AV = −Rvol

Rin
(2)

In the case of Rvol = Rin, this allows us to decrease the amplitude already. To
allow for amplification, then Rvol should be greater than Rin.

To be able to drive the speaker, we need a power amplifier. Originally, we
tried a single op-amp (LM741) amplifier to power the speaker, but this only
resulted in noise at the output – clearly, the output of this ordinary op-amp is
not powerful enough to drive the speaker. Similarly, a single BJT (2N3904) was
not enough.

During the labs we discovered the Darlington pair topology, in which two
NPN transistors are chained in a way such that their current gains are multi-
plied. This allows for very high current gains. In our kit we have Darlington
pair power transistors TIP120 (NPN) and TIP125 (PNP). However, we were
unable to find out how to implement this correctly in the circuit, due to a lack
of examples online and a lack of experience with setting up Darlington pairs or
power transistors.

3



We were able to use a topology similar to the Darlington pair called the
Sziklai Pair (also known as the “Complementary Darlington”) which uses a
NPN and PNP. They offer several advantages over Darlington pairs, which are
noted for example on the Wikipedia page2. Our reference for the schematic is
from “DIY Amplifier using TIP41C and TIP42C transistors”3. This example
used a 12V source and ground as its power rails (note that the VEE rail is not
used for this subcircuit). We kept most of the same values except that we used
the 15V from VCC, used a 20 kΩ rather than a 18 kΩ collector resistor, and
made some minor adjustments to how the transistors were connected to VCC.
The final schematic is shown in Figure 3.

The result sounds fairly good, except that it causes the TIP42, the LM7815
(VCC voltage regulator), and the speaker to heat up. (At first, we did not know
this, and it seems to have damaged one of our speakers so that the output sounds
distorted and fainter.) As a result, the TIP42 and LM7815 were “mounted”
onto a heatsink (via tape, as the solder didn’t stick onto the copper heatsink
without flux, which we didn’t have on hand). This solved the heating issue
for the chips, but the speaker still heated up very quickly, thus limiting us in
how long we could run the color organ continuously. We couldn’t figure out
the exact computations to set up the power correctly, but this is something to
be investigated for a practical amplifier circuit that would be run continuously
for any reasonable period of time. More power efficient speakers (e.g., Class D
speakers) are much more complicated and have more stages in order to achieve
higher efficiency; our two-stage filter is probably loosely a Class A amplifier4.

4.3 Power regulation

The VCC and VEE power rails were ±15 V. These each used two 9V batteries
and the appropriate voltage regulator (LM7815 and LM7915, respectively). See
Figure 4.

We had a few problems with the power rails. Firstly, there was a small pe-
riodic noise in the VEE rail, even when nothing but the voltage regulator was
plugged into it. We smoothed this out with a decoupling capacitor connected
between VEE and GND. Another issue was that the VCC rail dropped signifi-
cantly when powering the speaker and power amplifier circuit – this was due to
drained batteries and was fixed when the batteries were replaced.

2https://en.wikipedia.org/wiki/Sziklai_pair#Advantages
3https://www.youtube.com/watch?v=jFf6VnkpF6Q
4https://en.wikipedia.org/wiki/Power_amplifier_classes

4

https://en.wikipedia.org/wiki/Sziklai_pair##Advantages
https://en.wikipedia.org/wiki/Power_amplifier_classes


(a) Bass Filter: R1 = 680 Ω, C1 = 1 µF , R2 = 330 Ω, C2 = 1 µF (b) Midrange Filter: R1 = 150 Ω, C1 = 1 µF , R2 = 330 Ω, C2 =
0.33 µF

(c) Treble Filter: R1 = 1 kΩ, C1 = 0.033 µF , R2 = 2.7 kΩ, C2 =
0.01 µF

Figure 2: Schematic diagrams for all active bandpass filters.

5



Figure 3: Left: a regular inverting amplifier for volume control. Right: a Sziklai
pair using power transistors to drive the 8 Ω speaker.

Figure 4: Voltage Regulator

6



5 Arduino script

For the purposes of this project, we were allowed to use an Arduino to do
processing outside of the filtering (which had to be done in analog). We decided
to use the Arduino to perform thresholding on the filtered signals to determine
when to light the LEDs.

The Arduino script is very simple: for each filter output, choose a voltage
threshold (empirically determined) above which the LED should turn on. The
filter outputs are sampled uniformly in discrete time and used to determine
whether the corresponding LED should turn on or off. Note that this simple
sampling method doesn’t detect extremas or zero-crossings, but is rather a ran-
dom sampling of the possible voltages given the instantaneous signal amplitude.
As a result, a hysteresis delay factor is used so that the LEDs don’t immediately
turn back off.

The Arduino is then connected to three digital outputs, which are connected
to LEDs in series with a 220 Ω resistor. The schematics are not shown here
because they are trivial.

An alternative (using analog components) would be to use a comparator
(LM311) on the smoothed rectified output. We did not have enough time to
try out this method, but we estimate that it will give better results than the
Arduino’s method due to the limited sampling rate of the Arduino, as com-
pared with the high slew rate of the comparator and the continuous (smoothed)
voltage.

7



int val = 0, iThreshold = 20, i = 0, j;

int inputs[] = {A0,A1,A2},

outputs[] = {2,3,4},

vThresholds[] = {25, 130, 60},

lastIs[] = {0,0,0},

ons[] = {0,0,0};

void setup() {

for (j=0; j<3; ++j) {

pinMode(inputs[j], INPUT);

pinMode(outputs[j], OUTPUT);

}

}

void loop() {

++i;

for (j=0; j<3; ++j) {

val = analogRead(inputs[j]);

if (val > vThresholds[j]) {

lastIs[j] = i;

if (!ons[j]) {

digitalWrite(outputs[j], 1);

ons[j] = 1;

}

} else {

if (ons[j] && i-lastIs[j]>iThreshold) {

digitalWrite(outputs[j], 0);

ons[j] = 0;

}

}

}

}

Figure 5: Thresholding script for Arduino. vThresholds are found empirically and
are (unfortunately) sensitive to environmental conditions. The counter variable
i and the corresponding variable lastIs are used for hysteresis.

8



6 LTSpice simulations

See the simulations for each filter in Figures 6, 7, 8. An AC sweep is performed
to simulate the frequency response of these filters.

Figure 6: Simulation of Bass Filter

Figure 7: Simulation of Midrange Filter

In Figure 6, we see that cutoff frequency that we want (225 Hz and 450
HZ) is about (350 mV), which is where we would be setting our threshold to
detect. There will be a little bit of error as about 500Hz gets included within

9



Figure 8: Simulation of Treble Filter

the range, but that should not affect the overall result as it will definitely not
include frequency value that are not close to the thresholds.

In Figure 7, we see that the cutoff frequency that we want (1000Hz - 1500Hz)
about 1.24-1.25V. Which is the threshold voltage we will be setting for our
design. As stated with the Bass filter, there will be a little error around the
threshold and probably, about ±5% around the threshold.

In Figure 8, we want the range to be around 4800Hz to 5500Hz. From the
simulation, we see that the range is 4800Hz and 5800Hz. It is off due to we
want to hold the voltage gain under 3, and thus we do now want it to be super
high and make it hard to set threshold for our Arduino program.

7 Constructed Device

The end result is shown in Figure 9. Detail of the breadboard is shown in Figure
10. It is unfortunately messy due to the lack of time needed to refactor and tidy
it up. Details are given in the figure captions.

10



Figure 9: Construction. Notes on the non-breadboard components, clockwise
from top left: The TIP42 and LM7815 are (Scotch-taped) attached to a CPU
heatsink from an old PC. An iPhone 5 was used as the audio source. Four
9V batteries were used to power the power rails via voltage regulators. The
Arduino takes as inputs the (analog) filter outputs and outputs (digital) LED
signals. The speaker is an 8 Ω speaker of unknown wattage.

11



Figure 10: Detail of breadboard in construction. The top rails are GND and
VEE; the bottom rails are GND and VCC. On the bottom left, the power
amplifier (TIP41 is shown, TIP42 is on the copper heatsink). On the top left
(potentiometer and LM741) is the volume control. The input to the volume
control (top, row 14) is connected via black jumper cable to the audio input
(bottom, row 21), which is also the input to the filters. The three LEDs are
used for the color organ output and are triggered by the Arduino via the gray
wires on the bottom. The parts to the right of row 55 are the power regulator
circuits. The remaining circuits are the three filters: each contains a buffer stage
(2N3904 emitter-follower) followed by an active bandpass filter (LM741 op-amp
with two capacitors and two resistors – see the schematic diagrams for exact
values). There is only one biasing resistor pair on row 36 (two 2 kΩ resistors
between VCC and VEE; all three buffers share this same buffer, by connecting
their bases together, current-mirror style. The outputs of the filters are jumped
to the Arduino analog pins.

12



8 Evaluation of Constructed Device

The two lower-frequency filters perform decently. This means that, assuming
no changes in environmental factors (e.g., temperature) and music amplitude,
the filters and the thresholding cause the LEDs to light when the audio is in
the correct frequency range. We tested on a YouTube video5 that performed
a frequency sweep at constant amplitude under a short period of time, which
fulfills most of these assumptions. This is sufficient for our academic curiosity;
however, it would not be very good in a practical setting. A professional color
organ should be more robust to noise, changes in music amplitude, changes in
environmental factors, and multiple tones.

However, we were unable to get the highest (treble) filter to light the LED
at any threshold. We ran low on time and were unable to troubleshoot this.
Given that the other two work, we assume this is some fault of our building
rather than some fundamental flaw.

There is not much to evaluate about the speaker: the sound is good but it is
very power inefficient. It would be a good idea to study the common topologies
of the different power amplifier classes before a second attempt at building a
power amplifier.

9 Conclusions

The implementation of the project was a lot more difficult than what we ex-
pected, as we see that there are problems regarding our third filter on imple-
mentation (no detection).

Another key problem about our project is that it should work if the input
signal has varying amplitude (mixed volume) as our threshold system using the
Arduino is very sensitive to input amplitude. For future work, we would try to
make the system robust to any amplitude of audio (perhaps by normalization)
and other potential abnormalities in the noise.

Lastly, we did not implement threshold using analog logic, instead doing it
with an Arduino. We believe that using a comparator would be better, so that
is another thing that we should look into for further implementation.

5https://www.youtube.com/watch?v=qNf9nzvnd1k

13

https://www.youtube.com/watch?v=qNf9nzvnd1k

	Abstract
	Introduction
	Block diagram
	Schematic diagrams
	Filter design
	Volume control and power amplification
	Power regulation

	Arduino script
	LTSpice simulations
	Constructed Device
	Evaluation of Constructed Device
	Conclusions

