
ECE 475 Project 6: Market Basket Analysis
Tiffany Yu, Jonathan Lam, Harris Paspuleti

The goal of this project is to use market basket analysis to draw interesting inferences (association rules) about
some dataset.

In []:
mlxtend has a priori algorithm implementation
!pip install mlxtend

import pandas as pd
import numpy as np
import seaborn as sns
import tensorflow as tf
import matplotlib.pyplot as plt

from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori
from mlxtend.frequent_patterns import association_rules

Dataset
FIFA 18 Player Statistics

This dataset contains the attributes for every player that is registered in the latest edition of FIFA 18 database; it
can be used for soccer/videogame analysis as it contains attributes such as skill moves, overall, potential,
position, etc. While none of us know much about soccer, we wanted to see if there were any interesting
assocations we could learn from the data even without knowing much about the sport.

Content

Every player featuring in FIFA 18
70+ attributes
Player and Flag Images
Playing Position Data
Attributes based on actual data of the latest EA's FIFA 18 game
Attributes include on all player style statistics like Dribbling, Aggression, - GK Skills etc.
Player personal data like Nationality, Photo, Club, Age, Wage, Salary etc.

Data Source

The data is scraped from the website https://sofifa.com by extracting the Player personal data and
Player Ids and then the playing and style statistics.

In []:
grab the data
raw_data = 'https://raw.githubusercontent.com/4m4n5/fifa18-all-player-statistics/master/2
019/data.csv'
dataframe = pd.read_csv(raw_data, sep=',', header='infer', error_bad_lines=False)

Preprocessing

Preprocessing Step 1: Drop unusable columns and rows

Some columns were extraneous, included data that we didn't know how to interpret, or included data that was

https://github.com/4m4n5/fifa18-all-player-statistics/
https://sofifa.com

Some columns were extraneous, included data that we didn't know how to interpret, or included data that was
unique to a player. For example, there was a column for the player's index, the player photo, and some fields like
"Real Face" that we weren't familiar with. Additionally, there were many rows with acronyms (e.g., "LS", "ST",
etc.) with values that we weren't sure how to interpret.

Some rows also had missing data; we dropped this using pd::dropna() .

The dataframe after this initial preprocessing step is shown below.

In []:
preprocessing the data by removing unnecessary columns
dataframe = dataframe.drop(columns=[
 'Unnamed: 0','ID','Photo','Flag','Club Logo','Loaned From','Real Face','LS',
 'ST','RS','LW','LF','CF','RF','RW','LAM','CAM','RAM','LM','LCM','CM','RCM',
 'RM','LWB','LDM','LB','LCB','CB','RCB','RB','CDM','RDM','RWB'
]).dropna()
dataframe

Preprocessing Step 2: Determining bins

Before binning features, we plotted histograms of some of the quantitative fields so that we could see what the
distributions look like.

Since this is a videogame, much of the numerical ratings were presented as numbers out of 100, so we decided
that binning most fields into quartiles was good enough for our purposes. (Using larger bins was also
problematic because of the amount of time it took to run the algorithm with more items.)

In []:

Out[]:

Name Age Nationality Overall Potential Club Value Wage Special
Preferred

Foot
International

Reputation
Weak
Foot

0 L. Messi 31 Argentina 94 94
FC

Barcelona
€110.5M €565K 2202 Left 5.0 4.0

1
Cristiano
Ronaldo

33 Portugal 94 94 Juventus €77M €405K 2228 Right 5.0 4.0

2 Neymar Jr 26 Brazil 92 93
Paris Saint-

Germain
€118.5M €290K 2143 Right 5.0 5.0

3 De Gea 27 Spain 91 93
Manchester

United
€72M €260K 1471 Right 4.0 3.0

4 K. De Bruyne 27 Belgium 91 92
Manchester

City
€102M €355K 2281 Right 4.0 5.0

...

18202 J. Lundstram 19 England 47 65
Crewe

Alexandra
€60K €1K 1307 Right 1.0 2.0

18203
N.

Christoffersson
19 Sweden 47 63

Trelleborgs
FF

€60K €1K 1098 Right 1.0 2.0

18204 B. Worman 16 England 47 67
Cambridge

United
€60K €1K 1189 Right 1.0 3.0

18205 D. Walker-Rice 17 England 47 66
Tranmere

Rovers
€60K €1K 1228 Right 1.0 3.0

18206 G. Nugent 16 England 46 66
Tranmere

Rovers
€60K €1K 1321 Right 1.0 3.0

16643 rows × 56 columns

In []:
list of numerical fields that can be binned
to_bin = ['Age', 'Overall', 'Potential', 'Value', 'Wage', 'Release Clause',
 'Jersey Number', 'FKAccuracy', 'LongPassing', 'BallControl', 'Acceleration',
 'SprintSpeed', 'Agility', 'Reactions', 'Balance', 'ShotPower', 'Jumping',
 'Stamina', 'Strength', 'LongShots', 'Aggression', 'Interceptions',
 'Positioning', 'Vision', 'Penalties', 'Composure', 'Marking',
 'StandingTackle', 'SlidingTackle', 'GKDiving', 'GKHandling', 'GKKicking',
 'GKPositioning', 'GKReflexes'
]

histograms; see: https://realpython.com/python-histograms/
for col in to_bin:
 # An "interface" to matplotlib.axes.Axes.hist() method
 n, bins, patches = plt.hist(x=dataframe.loc[:, col], bins='auto', color='#0504aa',
 alpha=0.7, rwidth=0.85)
 plt.title(col)
 plt.grid(axis='y', alpha=0.75)
 plt.xlabel('Value')
 plt.ylabel('Frequency')
 plt.text(23, 45, r'$\mu=15, b=3$')
 maxfreq = n.max()
 # Set a clean upper y-axis limit.
 plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)
 plt.figure()
/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: RuntimeWarning: More tha
n 20 figures have been opened. Figures created through the pyplot interface (`matplotlib.
pyplot.figure`) are retained until explicitly closed and may consume too much memory. (To
control this warning, see the rcParam `figure.max_open_warning`).
 from ipykernel import kernelapp as app

Preprocessing Step 3: Extracting numbers and binning

Some of the numerical fields were formatted, and the numerical value had to be extracted first before binning.
For example, money values were written with a euro sign prefix and the magnitude was indicated with a "M" or
"K" postfix (indicating millions or thousands).

We decided to bin the players' ages into bins of age 10, and monetary values (e.g., "Wage," "Release Clause,"
"Value") into logarithmic bins. Most of the player stats are values between 0 and 100, and we decided to bin
these into quartiles (larger bins would be noninformative, and smaller bins would make the algorithm take too
long).

The dataframe of the binned values is shown below the code.

In []:
binning quantitative values
def bin(col, bins, col_name):
 new_col = col.copy()

 for i, bin_min in enumerate(bins):
 bin_max = float('Inf') if i==len(bins)-1 else bins[i+1]
 new_col[(col >= bin_min) & (col < bin_max)] = f'{bin_min}<={col_name}<{bin_max}'

<Figure size 432x288 with 0 Axes>

 return new_col

make a money column a number
def money_to_number(df_col):
 col = df_col.copy()

 for i, val in enumerate(col):
 if val[-1] == 'M':
 val = int(float(val[1:-1]) * 1000000)
 elif val[-1] == 'K':
 val = int(float(val[1:-1]) * 1000)
 else:
 val = int(float(val[1:]))
 col.iloc[i] = val

 return col.astype('int32')

create a copy so we don't modify the original dataframe in place
dataframe_binned = dataframe.copy()

dataframe_binned.loc[:, 'Age'] = bin(dataframe.loc[:, 'Age'],
 [0, 10, 20, 30, 40, 50], 'Age')
dataframe_binned.loc[:, 'Overall'] = bin(dataframe.loc[:, 'Overall'],
 [0, 25, 50, 75, 100], 'Overall')
dataframe_binned.loc[:, 'Potential'] = bin(dataframe.loc[:, 'Potential'],
 [25, 50, 75, 100], 'Potential')
dataframe_binned.loc[:, 'Value'] = bin(money_to_number(dataframe.loc[:, 'Value']),
 [0, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9], 'Value')
dataframe_binned.loc[:, 'Wage'] = bin(money_to_number(dataframe.loc[:, 'Wage']),
 [0, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9], 'Wage')
dataframe_binned.loc[:, 'Release Clause'] = bin(money_to_number(dataframe.loc[:, 'Release
Clause']),
 [0, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9],
'Release Clause')

to_bin = [
 'Jersey Number', 'FKAccuracy', 'LongPassing', 'BallControl',
 'Acceleration', 'SprintSpeed', 'Agility', 'Reactions', 'Balance',
 'ShotPower', 'Jumping', 'Stamina', 'Strength', 'LongShots', 'Aggression',
 'Interceptions', 'Positioning', 'Vision', 'Penalties', 'Composure',
 'Marking', 'StandingTackle', 'SlidingTackle', 'GKDiving', 'GKHandling',
 'GKKicking', 'GKPositioning', 'GKReflexes']

for col in to_bin:
 dataframe_binned.loc[:, col] = bin(dataframe.loc[:, col], [0, 25, 50, 75, 100], col)
dataframe_binned
Out[]:

Name Age Nationality Overall Potential Club Value

0 L. Messi 30<=Age<40 Argentina 75<=Overall<100 75<=Potential<100
FC

Barcelona
100000000.0<=Value<1000000000.0

1
Cristiano
Ronaldo

30<=Age<40 Portugal 75<=Overall<100 75<=Potential<100 Juventus 10000000.0<=Value<100000000.0

2 Neymar Jr 20<=Age<30 Brazil 75<=Overall<100 75<=Potential<100
Paris Saint-

Germain
100000000.0<=Value<1000000000.0

3 De Gea 20<=Age<30 Spain 75<=Overall<100 75<=Potential<100
Manchester

United
10000000.0<=Value<100000000.0

4 K. De Bruyne 20<=Age<30 Belgium 75<=Overall<100 75<=Potential<100
Manchester

City
100000000.0<=Value<1000000000.0

...

18202 J. Lundstram 10<=Age<20 England 25<=Overall<50 50<=Potential<75
Crewe

Alexandra
10000.0<=Value<100000.0

Preprocessing Step 4: Choosing features

It is clear that the table becomes very wide at this point. If we included all of the features from the previous
section (categorical and binned quantitative features), the a priori algorithm took way too long to run. We
experimented with a few different combinations of which features to include. The following is one possible
combination of features to perform an analysis on (an explanation of this choice will follow in a later section).

In []:
didn't include most of the rows in the analysis, because the a priori
algorithm takes too long
cols = [
 'Preferred Foot', 'Age', 'Aggression', 'Nationality',
 'Body Type', 'Reactions','Position', 'Balance',
 'Contract Valid Until', 'Jersey Number', 'Penalties', 'Vision',
 # 'SprintSpeed', 'Agility', 'Reactions', 'ShotPower', 'Jumping', 'Stamina',
 # 'Strength', 'LongShots', 'Aggression','Composure', 'Agility',
 # 'Interceptions', 'Positioning' , 'Composure', 'Marking', 'StandingTackle',
 # 'SlidingTackle', 'GKDiving','International Reputation','Body Type',
 # 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes','Overall',
 # 'Value', 'Wage', 'FKAccuracy', 'LongPassing', 'BallControl', 'Aceleration'
]

Preprocessing Step 5: One-hot encoding items

Now that all of the data is binned, it is one-hot encoded. This is the necessary data input format for the a priori
algorithm.

In []:
format data for the apriori algorithm
def one_hot_encode_column(df, col):
 items = np.unique(np.array(df.loc[:,col]))
 items_onehot = df.loc[:,col][:, np.newaxis] == items[np.newaxis, :]
 return pd.DataFrame(columns=[col+' '+str(item) for item in items],
 data=items_onehot,
 dtype=np.int32)

basket_sets = pd.concat([
 one_hot_encode_column(dataframe_binned, col) for col in cols
], axis=1)
basket_sets

18203
N.

Christoffersson
10<=Age<20 Sweden 25<=Overall<50 50<=Potential<75

Trelleborgs
FF

10000.0<=Value<100000.0

18204 B. Worman 10<=Age<20 England 25<=Overall<50 50<=Potential<75
Cambridge

United
10000.0<=Value<100000.0

18205 D. Walker-Rice 10<=Age<20 England 25<=Overall<50 50<=Potential<75
Tranmere

Rovers
10000.0<=Value<100000.0

18206 G. Nugent 10<=Age<20 England 25<=Overall<50 50<=Potential<75
Tranmere

Rovers
10000.0<=Value<100000.0

Name Age Nationality Overall Potential Club Value

16643 rows × 56 columns

/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:4: FutureWarning: Support fo
r multi-dimensional indexing (e.g. `obj[:, None]`) is deprecated and will be removed in a
future version. Convert to a numpy array before indexing instead.
 after removing the cwd from sys.path.
Out[]:

Preferred
Preferred

Foot
Age Age Age Age Aggression Aggression

Performing Market Basket Analysis

Finding itemsets

Now that the data is correctly formatted, we can run the a priori market basket analysis. We use mlxetend's a
priori implementation to find itemsets with a minimum support of 0.05.

A preview of some of the itemsets with the highest support are shown below. The supports of the visible
itemsets make sense. E.g., most of the players are right-footed, most of them are in their twenties, and the
itemsets with small support are more specific.

(Note that, with the current feature set, this implementation takes a few minutes to complete this step. Using all
of the features, this algorithm did not even complete overnight.)

In []:
for usage of apriori() see: https://pbpython.com/market-basket-analysis.html
frequent_itemsets = apriori(basket_sets, min_support=0.05, use_colnames=True)
frequent_itemsets

Preferred
Foot Left

Foot
Right

Age
10<=Age<20

Age
20<=Age<30

Age
30<=Age<40

Age
40<=Age<50

Aggression
0<=Aggression<25

Aggression
25<=Aggression<50 50<=Aggression<75

0 1 0 0 0 1 0 0 1

1 0 1 0 0 1 0 0 0

2 0 1 0 1 0 0 0 0

3 0 1 0 1 0 0 0 1

4 0 1 0 1 0 0 0 0

...

16638 0 1 1 0 0 0 0 1

16639 0 1 1 0 0 0 0 1

16640 0 1 1 0 0 0 0 1

16641 0 1 1 0 0 0 0 1

16642 0 1 1 0 0 0 0 0

Preferred
Foot Left

Preferred
Foot

Right

Age
10<=Age<20

Age
20<=Age<30

Age
30<=Age<40

Age
40<=Age<50

Aggression
0<=Aggression<25

Aggression
25<=Aggression<50 50<=Aggression<75

16643 rows × 237 columns

Out[]:

support itemsets

0 0.229526 (Preferred Foot Left)

1 0.770474 (Preferred Foot Right)

2 0.117287 (Age 10<=Age<20)

3 0.681307 (Age 20<=Age<30)

4 0.200745 (Age 30<=Age<40)

...

2829 0.064472 (Aggression 50<=Aggression<75, Jersey Number 0...

2830 0.054197 (Aggression 50<=Aggression<75, Penalties 50<=P...

2831 0.063330 (Aggression 50<=Aggression<75, Penalties 50<=P...

2832 0.059725 (Penalties 50<=Penalties<75, Jersey Number 0<=...

2833 0.054858 (Aggression 50<=Aggression<75, Penalties 50<=P...

2834 rows × 2 columns

Finding association rules

We grab a list of the association rules from the itemsets where the confidence is greater than 0.8, and the lift is
greater than 7. A preview of these is shown below.

In []:
rules = association_rules(frequent_itemsets, metric="confidence", min_threshold=0.5)

pd.set_option('max_colwidth', 100)

rules[(rules['lift'] >= 7) & (rules['confidence'] >= 0.8)]
Out[]:

antecedents consequents
antecedent

support
consequent

support
support confidence lift leverage conviction

95
(Aggression

0<=Aggression<25)
(Position GK) 0.056180 0.114162 0.053957 0.960428 8.412842 0.047543 22.385363

199 (Position GK)
(Penalties

0<=Penalties<25)
0.114162 0.100703 0.093553 0.819474 8.137530 0.082056 4.981529

200
(Penalties

0<=Penalties<25)
(Position GK) 0.100703 0.114162 0.093553 0.928998 8.137530 0.082056 12.476171

665
(Preferred Foot

Right, Position GK)
(Penalties

0<=Penalties<25)
0.102566 0.100703 0.084720 0.826011 8.202442 0.074392 5.168687

666
(Preferred Foot
Right, Penalties

0<=Penalties<25)
(Position GK) 0.090308 0.114162 0.084720 0.938124 8.217470 0.074411 14.316283

669
(Penalties

0<=Penalties<25)

(Preferred Foot
Right, Position

GK)
0.100703 0.102566 0.084720 0.841289 8.202442 0.074392 5.654511

963
(Age 20<=Age<30,

Position GK)
(Penalties

0<=Penalties<25)
0.069819 0.100703 0.056360 0.807229 8.015937 0.049329 4.665103

964
(Age 20<=Age<30,

Penalties
0<=Penalties<25)

(Position GK) 0.060987 0.114162 0.056360 0.924138 8.094962 0.049398 11.676954

1448
(Body Type Normal,

Position GK)
(Penalties

0<=Penalties<25)
0.081536 0.100703 0.067055 0.822402 8.166612 0.058844 5.063676

1449
(Body Type Normal,

Penalties
0<=Penalties<25)

(Position GK) 0.071622 0.114162 0.067055 0.936242 8.200984 0.058879 13.893668

1552

(Reactions
50<=Reactions<75,

Penalties
0<=Penalties<25)

(Position GK) 0.074926 0.114162 0.068978 0.920609 8.064054 0.060424 11.157978

1687
(Balance

25<=Balance<50,
Position GK)

(Penalties
0<=Penalties<25)

0.074746 0.100703 0.063330 0.847267 8.413522 0.055803 5.888029

1688

(Balance
25<=Balance<50,

Penalties
0<=Penalties<25)

(Position GK) 0.065673 0.114162 0.063330 0.964318 8.446922 0.055833 24.826175

1696

(Jersey Number
0<=Jersey

Number<25,
Penalties

0<=Penalties<25)

(Position GK) 0.059304 0.114162 0.054197 0.913880 8.005112 0.047427 10.286141

1700
(Position GK, Vision

25<=Vision<50)
(Penalties

0<=Penalties<25)
0.075708 0.100703 0.063811 0.842857 8.369732 0.056187 5.722799

1701

(Penalties
0<=Penalties<25,

Vision
(Position GK) 0.068497 0.114162 0.063811 0.931579 8.160141 0.055991 12.946861

Discussion
The table shown above is for associations with high confidence (> 0.8) and lift (> 7).

25<=Vision<50)

2278
(Age 20<=Age<30,

Preferred Foot Right,
Position GK)

(Penalties
0<=Penalties<25)

0.062789 0.100703 0.050952 0.811483 8.058184 0.044629 4.770383

2279

(Age 20<=Age<30,
Preferred Foot Right,

Penalties
0<=Penalties<25)

(Position GK) 0.054618 0.114162 0.050952 0.932893 8.171654 0.044717 13.200437

2283
(Age 20<=Age<30,

Penalties
0<=Penalties<25)

(Preferred Foot
Right, Position

GK)
0.060987 0.102566 0.050952 0.835468 8.145690 0.044697 5.454466

3018
(Preferred Foot

Right, Body Type
Normal, Position GK)

(Penalties
0<=Penalties<25)

0.072883 0.100703 0.060626 0.831822 8.260151 0.053287 5.347291

3019

(Preferred Foot
Right, Body Type

Normal, Penalties
0<=Penalties<25)

(Position GK) 0.064351 0.114162 0.060626 0.942110 8.252389 0.053280 15.302135

3025
(Body Type Normal,

Penalties
0<=Penalties<25)

(Preferred Foot
Right, Position

GK)
0.071622 0.102566 0.060626 0.846477 8.253022 0.053280 5.845583

3164

(Preferred Foot
Right, Reactions

50<=Reactions<75,
Penalties

0<=Penalties<25)

(Position GK) 0.067055 0.114162 0.062489 0.931900 8.162950 0.054834 13.007830

3170

(Reactions
50<=Reactions<75,

Penalties
0<=Penalties<25)

(Preferred Foot
Right, Position

GK)
0.074926 0.102566 0.062489 0.834002 8.131393 0.054804 5.406283

3403

(Preferred Foot
Right, Balance

25<=Balance<50,
Position GK)

(Penalties
0<=Penalties<25)

0.066755 0.100703 0.057081 0.855086 8.491162 0.050359 6.205708

3404

(Preferred Foot
Right, Balance

25<=Balance<50,
Penalties

0<=Penalties<25)

(Position GK) 0.059064 0.114162 0.057081 0.966429 8.465412 0.050338 26.387232

3410

(Balance
25<=Balance<50,

Penalties
0<=Penalties<25)

(Preferred Foot
Right, Position

GK)
0.065673 0.102566 0.057081 0.869167 8.474255 0.050345 6.859411

3415

(Preferred Foot
Right, Position GK,

Vision
25<=Vision<50)

(Penalties
0<=Penalties<25)

0.068197 0.100703 0.057922 0.849339 8.434100 0.051055 5.969018

3416

(Preferred Foot
Right, Penalties

0<=Penalties<25,
Vision

25<=Vision<50)

(Position GK) 0.061407 0.114162 0.057922 0.943249 8.262361 0.050912 15.609075

3422

(Penalties
0<=Penalties<25,

Vision
25<=Vision<50)

(Preferred Foot
Right, Position

GK)
0.068497 0.102566 0.057922 0.845614 8.244613 0.050897 5.812927

5132

(Body Type Normal,
Reactions

50<=Reactions<75,
Penalties

0<=Penalties<25)

(Position GK) 0.054798 0.114162 0.050652 0.924342 8.096750 0.044396 11.708466

antecedents consequents
antecedent

support
consequent

support
support confidence lift leverage conviction

The table shown above is for associations with high confidence (> 0.8) and lift (> 7).

The first thing to notice is that many of the association rules shown seem to be centered around goalkeepers. It
seems that goalkeepers have very distinctive attributes, e.g.:

They are not very aggressive (0 <= aggression < 25)
They are not prone to causing penalties (0 <= penalties < 25)
They have a "normal" body type, have medium reactions, and have few penalties.

There are a lot of repeated associations in this list, but far and large they are mostly about goalkeepers. This is
likely related to the bimodal distributions in the earlier histograms, where goalkeepers clearly stood out from the
rest; most likely the goalkeepers are very specialized while the other players are more diverse, and therefore all
of these selected associations involve goalkeepers.

These results are specific to this choice of features. When we tried different set of features (e.g., including
values such as "International Reputation," "Value," "Wage," "Overall," etc.), there were many less-interesting
correlations. Many of the associations we saw were that the highest-paid players were those with the highest
international reputation, and who had the highest overall and potential scores.

We also did not include many of the player statistics because the algorithm takes too long to run otherwise. If
we knew more about soccer or FIFA 18, we could probably draw much more interesting conclusions by using
the most relevant or interesting statistics by choosing different sets of features.

	ECE 475 Project 6: Market Basket Analysis
	Dataset
	Content
	Data Source

	Preprocessing
	Preprocessing Step 1: Drop unusable columns and rows
	Preprocessing Step 2: Determining bins
	Preprocessing Step 3: Extracting numbers and binning
	Preprocessing Step 4: Choosing features
	Preprocessing Step 5: One-hot encoding items

	Performing Market Basket Analysis
	Finding itemsets
	Finding association rules

	Discussion

