
Frequentist Machine LearningFrequentist Machine Learning

Assignment 5Assignment 5

Jonathan Lam, Tiffany Yu, Harris PaspuletiJonathan Lam, Tiffany Yu, Harris Paspuleti

Defining the ModelsDefining the Models
We use the xgboost package for gradient-boosted trees and the sklearn RandomForestRegressor for random

forests.

In [1]:
!pip install xgboost==1.2.0

setting up
importimport numpynumpy asas npnp
importimport pandaspandas asas pdpd
importimport matplotlib.pyplotmatplotlib.pyplot asas pltplt
importimport xgboostxgboost asas xgbxgb

sklearn utility functions for training
fromfrom sklearn.model_selectionsklearn.model_selection importimport train_test_split
fromfrom sklearn.preprocessingsklearn.preprocessing importimport StandardScaler
fromfrom sklearn.ensemblesklearn.ensemble importimport RandomForestRegressor
fromfrom sklearn.metricssklearn.metrics importimport mean_absolute_error
fromfrom sklearnsklearn importimport metrics

plt.rcParams['figure.figsize'] = [12, 12]

define regressor models for both XGB and RF ensemble models
classclass RegressorRegressor:

 defdef __init__(self, X_train, X_test, y_train, y_test, feature_names, n_trees):
 self.feature_names = feature_names
 self.trees = list(range(1, n_trees))
 self._mae = []
 self.X_train = X_train
 self.X_test = X_test
 self.y_train = y_train
 self.y_test = y_test

 defdef train_eval(self, depth, type=NoneNone):
 self._mae = []
 forfor tree inin self.trees:
 ifif type == 'xgb':
 self.regressor = xgb.XGBRegressor(objective="reg:pseudohubererror",
 eta=0.05,
 max_depth=depth,
 n_estimators=tree,
 n_jobs=2)
 elifelif type == 'rf':
 self.regressor = RandomForestRegressor(n_estimators=tree,
 max_features=depth)
 self.regressor.fit(self.X_train, self.y_train)
 y_pred = self.regressor.predict(self.X_test)
 self._mae.append(metrics.mean_absolute_error(self.y_test, y_pred))

 defdef mae(self):

 returnreturn self._mae

 # plot relative importance plot; assumes model has already been trained
 defdef plot_importance(self, type=NoneNone):
 features = self.feature_names
 importances = self.regressor.feature_importances_
 indices = np.argsort(importances)
 ifif type == 'xgb':
 plt.title('Feature Importances for Gradient Trees')
 elifelif type == 'rf':
 plt.title('Feature Importances for Random Forest')
 plt.barh(range(len(indices)), importances[indices], color='b', align='center')
 plt.yticks(range(len(indices)), [features[i] forfor i inin indices])
 plt.xlabel('Relative Importance')
 plt.show()

Running the ModelsRunning the Models

California housing DatsetCalifornia housing Datset

Replicate figure 15.3 comparing random forests and gradient boosted trees. You can use whatever
package you wish, you don't have to use xgboost if you'd rather keep everything in sci-kit learn.
Compare the feature importance found by random forests and gradient boosted trees.

In [20]:
california housing dataset from sklearn
fromfrom sklearn.datasetssklearn.datasets importimport fetch_california_housing
cal_housing = fetch_california_housing()
X = pd.DataFrame(cal_housing.data, columns=cal_housing.feature_names)
y = cal_housing.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

create regressor
n_trees = 275
cal_reg = Regressor(X_train, X_test, y_train, y_test, cal_housing.feature_names, n_trees)

train classifier
cal_reg.train_eval(4, 'xgb')
GBM_depth_4 = cal_reg.mae()

cal_reg.train_eval(6,'xgb')
GBM_depth_6 = cal_reg.mae()

cal_reg.plot_importance('xgb')

Collecting xgboost==1.2.0
 Downloading https://files.pythonhosted.org/packages/f6/5c/1133b5b8f4f2fa740ff27abdd35b8e79c
e6e1f8d6480a07e9bce1cdafea2/xgboost-1.2.0-py3-none-manylinux2010_x86_64.whl (148.9MB)
 |████████████████████████████████| 148.9MB 77kB/s
Requirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from xgboost=
=1.2.0) (1.18.5)
Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from xgboost=
=1.2.0) (1.4.1)
Installing collected packages: xgboost
 Found existing installation: xgboost 0.90
 Uninstalling xgboost-0.90:
 Successfully uninstalled xgboost-0.90
Successfully installed xgboost-1.2.0

cal_reg.train_eval(2, 'rf')
RF_m_2 = cal_reg.mae()

cal_reg.train_eval(6, 'rf')
RF_m_6 = cal_reg.mae()

cal_reg.plot_importance('rf')

The graphs above show the relative variable importance for each of the eight predictor variables. The feature with the
largest bar is the feature that is the most relevant predictor. For both of the feature importance graphs for the
California dataset, median income has the greatest importance, which would make the most sense because the
amount of income a person has dictates how much they can afford and is one of the main deciding factors of buying
a house. The next three features with the greatest importance are average household members, latitude, and
longitude, which is the same for both gradient boost and random forest. The rest of the features are not in the same
order and have the least relevance, which means they are less influential. Each feature is plotted w.r.t. its F-score,
which is a metric that sums up how many times each feature is split on.

In [21]:
plt.figure(figsize=(16, 8))
plt.plot(cal_reg.trees, GBM_depth_4)
plt.plot(cal_reg.trees, GBM_depth_6)
plt.plot(cal_reg.trees, RF_m_2)
plt.plot(cal_reg.trees, RF_m_6)
plt.legend(['GBM depth=4', 'GBM depth=6', 'RF m=2', 'RF m=6'])
plt.title('California Housing Data')
plt.xlim([0, n_trees])
plt.xlabel('Number of Trees')
plt.ylabel('MAE')
plt.show()

The above graph shows the average absolute error given the number of trees or n estimators for the California
housing dataset. For both gradient boosting trees, we can see that as the number of trees increase the average error
decreases. We see that the random forest models converge very quickly, and then remain roughly constant after that;
their MAE is also a little noisy even after convergence. For the gradient boosted models, they converge slower but the
depth=6 model eventually beats the MAE of the random forests, and it looks as though the depth=4 model will also
beat the MAE of the random forests given a few more trees (n_estimators). The distinction between the two gradient
boosted models' performances is clear, but the random forests are hardly distinguishable for this dataset.

Boston Housing DatasetBoston Housing Dataset

Select another dataset and repeat the analysis. Pick a dataset we have not yet studied in class.

In [18]:
boston housing dataset from sklearn
fromfrom sklearn.datasetssklearn.datasets importimport load_boston
bos_housing = load_boston()
X = pd.DataFrame(bos_housing.data, columns=bos_housing.feature_names)
y = bos_housing.target
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

create classifier
n_trees = 275
bos_reg = Regressor(X_train, X_test, y_train, y_test, bos_housing.feature_names, n_trees)

train classifier
bos_reg.train_eval(4, 'xgb')
GBM_depth_4 = bos_reg.mae()

bos_reg.train_eval(6, 'xgb')
GBM_depth_6 = bos_reg.mae()

bos_reg.plot_importance('xgb')

bos_reg.train_eval(2, 'rf')
RF_m_2 = bos_reg.mae()

bos_reg.train_eval(6, 'rf')

RF_m_6 = bos_reg.mae()

bos_reg.plot_importance('rf')

The 13 features of the boston dataset include:

1. CRIM - per capita crime rate by town
2. ZN - proportion of residential land zoned for lots over 25,000 sq. ft
3. INDUS - porportion of non-retail business acres per town
4. CHAS - Charles River dummy variable
5. NOX - nitric oxides concentration (parts per 10 million)
6. RM - average number of rooms per dwelling
7. AGE -proportion of owner-occupied units built prior to 1940
8. DIS - weighted distances to five Boston employment centres
9. RAD - index of accessibility to radial highways

10. TAX - full-value property-tax rate per $10,000
11. PTRATIO - pupil-teacher ratio by town
12. B - 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town
13. LSTAT - % lower status of the population

The features from the gradient boosting trees and random forest feature importance graphs differ slightly. From the
gradient boosting tree graph, LSTAT has the greatest relevancy which means the lower percentage of the status of
the population has the greatest relavancy of who buys houses in Boston. In addition NOX and RM have the next
greatest relavancy, which means has some relavancy. In the random forest feature importance graph, RM and LSTAT
have the greatest relavancy, which is similar to the other feature importance graph. The rest of the features match in
how much relavancy they have to the boston dataset; however, the random forest feature importance graph has
more features with close to 0 relative importance, which implies that those features don't have any impact for the
datset.

In [19]:
plt.figure(figsize=(16, 8))
plt.plot(bos_reg.trees, GBM_depth_4)
plt.plot(bos_reg.trees, GBM_depth_6)
plt.plot(bos_reg.trees, RF_m_2)
plt.plot(bos_reg.trees, RF_m_6)
plt.legend(['GBM depth=4', 'GBM depth=6', 'RF m=2', 'RF m=6'])
plt.title('Boston Housing Data')
plt.xlim([0, n_trees])
plt.xlabel('Number of Trees')
plt.ylabel('MAE')
plt.show()

The above graph shows the average absolute error given the number of trees or n estimators for the Boston housing
dataset. As before, the gradient-boosted trees do slightly better than random forests, but takes longer to reach a
minimum. For random forest, the average error, although a little bit noisy, leveled off to a constant number fairly
quickly, which shows that we would not need to train it for a large number of trees. Here the distinction between the
two random forest models is more clear than in the California dataset example: the higher m (maximum number of

features per tree) has a noticeably lower MAE. On the other hand, the two gradient-boosted tree models converge to
nearly the same value, although we see that the higher depth converges to that value faster.

	Defining the Models
	Running the Models
	California housing Datset
	Boston Housing Dataset

