
ECE472 – Quiz 6

Jonathan Lam

October 14, 2020

1. Explain MAML carefully... (think gradients) (arXiv:1703.03400)

Model-Agnostic Meta-Learning (MAML) is aimed towards making a network more sensitive
to the tasks for which it is intended for use (e.g., regression, classification). This means that
the network will be able to more quickly train with fewer examples (e.g., in the case of one-
or few-shot training). As opposed to prior attempts at this, which usually involve adding
more parameters or using a specialized architecture aimed at optimizing learning patterns
(“meta-learning”), the authors of this paper surmise that a network can be pre-trained so
that the initialized weights throughout the network generally tend to be more sensitive to the
changes in the inputs (i.e., they will have a larger change in gradient for the kinds of tasks
the network is intended for). They state, “the intuition behind this approach is that some
internal representations are more transferrable than others.” Therefore, MAML is essentially
an initialization method, in that it does not depend on or affect the structure of the network
(and can be applied to many different learning tasks and network structures, as the authors
demonstrate).

In particular MAML works by having a pre-training session that involves optimizing weights
such that the potential for gradient optimization upon training is maximized. This is just an-
other optimization (gradient descent) problem that embeds the original optimization (gradient
descent) problem, and is all encoded in this formula:

min
θ

∑
Ti∼p(T )

LTi
(
fθ′i
)

= min
θ

∑
Ti∼p(T )

LTi
(
fθ−α∇θLTi (fθ)

)
The expression on the left indicates the intent: we want to find the weights that would,
when trained on a few tasks (producing θ′, the weights after the stochastic gradient descent
rule) picked from the tasks training dataset with a representative sample distribution (i.e.,
Ti ∼ p(T )), minimize the loss. In other words, we aim to choose the set of weights that
cause the greatest decrease in loss after it an update rule (on a representative distribution of
tasks), which can be thought of as increasing the sensitivity of the loss to updates. Note that
this requires some knowledge of the distribution of tasks during pre-training, and involves
calculating a second-order gradient (gradient of a gradient) (or at least approximating this
with a first-order approximation).

1



2. What are the main benefits and weaknesses of Neural ODEs? (arXiv:1806.07366)

Benefits :

Memory efficiency From an intuitive perspective, there are no more layers like in the
more traditional ResNet, but rather a differentiable state function. While we had
to store much intermediate state for weights in order to propagate gradients in the
more traditional structure (making memory usage linear w.r.t. number of layers),
using the adjoint sensitivity model for reverse-mode autodiff is much more memory
efficient (roughly constant, according to Table 1 in the report).

ODE solvers can be treated as a black box. Not explicitly mentioned as a benefit,
but this allows for existing ODE solvers to be somewhat plug-and-play, because the
described implementation doesn’t require any knowledge about the internal state of
the ODE solver.

Powerful existing ODE solvers The authors cite a long and successful history of
ODE solvers. Some advanced ODE solvers use adaptive methods that scale really
well to large networks. Next point is related.

Adjustable precision/computing power Some of the ODE solvers allow for cus-
tomizable levels of accuracy.

“Scalable and invertible normalizing flows” I’m not too sure about what this means,
because we did not cover the normalizing flow task, but neural ODEs are supposed
to be beneficial for this type of problem.

Arbitrary evaluation points This can be thought of as nicely accommodating for
interpolated or extrapolated data points. This is nice, for example, if most of the
data comes in discretized measurements (e.g., at specific points in time) but now you
want to provide an inference on a data point that came at some in-between value.
My (very layman’s) understanding of this is that having the ODE solution be a
differentiable (and thus smooth) function rather than being discretely parameterized
like in a traditional ResNet allows for this smooth interpolation and extrapolation.
The extrapolation proficiency of neural ODEs is demonstrated in Figure 8.

Drawbacks :

Non-uniqueness There is not always a unique solution to an ODE, so this is a potential
problem. However, the authors note that finite weights (which can be encouraged by
regularization) and traditional nonlinearities (e.g., activations) like tanh and ReLU
don’t pose this problem.

Minibatching is inefficient Minibatching, which is a common theme in SGD, may be
more inefficient. My intuition for this is that an ODE only allows a fixed-size input
(and a single gradient update) at a time; the authors mention that a mini-batch
can be made by concatenating the batch samples’ states, but this may require more
computation than if doing each sample separately.

2



3. Does magnet loss require any extra label information per example compared to softmax cross
entropy? (arXiv:1511.05939)

No.

The authors mention at the beginning that traditional classification methods (i.e., not distance
metric learning (DML)) tend to discard all but the label information by the end of the network
(and thus these are not well-suited to classification on different classes). DML attempts
to make the classification retain more information up until the last step (i.e., the inputs
get encoded into some vector space, and then similarity is measured by some function of
distance in that vector space), which offers some benefits, e.g., zero-shot learning and easier
visualization of similarity.

However, the only supervision given is still the labels (just like in softmax) – the algorithm
provided generates a vector representation for DML, but this is all unsupervised. In other
words, the labels provide guidance for the results to be clustered into “classes,” but there is
an unsupervised subclustering within those classes into smaller “clusters” using a K-means
method and a loss function that penalizes cluster overlap. This allows for magnet loss to gen-
erate multi-dimensional vectors with some notion of similarity without supervised guidance.

3


