
ECE472 – Quiz 1

Jonathan Lam

September 16, 2020

1. Explain the key differences between Adam and the basic gradient descent algorithm.

The basic stochastic gradient descent algorithm takes the gradient of the loss function based on
a batch of samples, and it changes all of the variables in the direction of the negative gradient.
The basic idea of the gradient descent doesn’t mention much about step size or convergence,
which could easily become problematic when the gradient is not smooth or somewhat irregular
(“pathological curvature”). The easy thing to do (and this basic approach works for the first
two homework assignments) is to assign a small value to the learning rate α and assume that
the gradient of the objective (loss) function is smooth enough that there are no problems with
the descent. When there are problems with convergence, you can manually make the step size
smaller (this was my naive approach to nonconvergence for homework 2, in which I decreased
α by a factor of 2 every 1000 epochs).

The main difference for Adam descent is that it stores a weighted gradient average (very similar
to momentum) and a weighted gradient-squared average (which can be loosely interpreted as
an (uncentered) “variance”). These averages are calculated much like momentum is, with
the current weight calculated from the previous weight (multiplied by a multiplicative decay
factor) combined with the current gradient (or gradient-squared) – this in itself offers the
benefit of momentum, similar to RMSProp. (It’s important to note that this operations is
not very expensive, as it is linear in time and space w.r.t. the number of coefficients, rather
than the size of the input, and only involves the first-order gradient like regular stochastic
gradient descent.) (These weighted averages are scaled by a factor to correct their initialization
bias.)

Using these calculated values, Adam descent has a different update rule: instead of subtracting
the gradients (multiplied by some learning factor) from the weights, the update rule is:

θt ← θt−1 − α
m̂t√
v̂t + ε

where θt is the vector of weights at the current iteration, θt−1 is the vector of weights at
the previous iteration, α is the (roughly) upper limit on the learning rate, m̂ is the vector of
initialization-bias-corrected weighted gradient averages, v̂ is the vector of initialization-bias-
corrected weighted gradient “variances”, and ε is a small nonzero constant to avoid division
by zero.

The reason we have this more complex update rule is that it is “automatically annealing.”
If we treat m̂ as roughly the gradient (with some momentum), and treat v̂ as some sort of
variance/noise/uncertainty factor, then m̂ denotes the (negative of) the direction we should

1



be moving towards to minimize the objective, and v̂ indicates how sure we are of moving in
the correct direction. The greater the gradient m̂, the further we should move; the larger the
uncertainty v̂, the less we should move. This “intelligently” sets the step size, and it does so
for each weight coefficient by considering its gradient and gradient-squared.

Other benefits of Adam is that it converges well and works well on sparse matrices (similar
to AdaGrad). The cost is that each iteration is slightly more complex than that of a basic
stochastic gradient descent scheme, but this cost is likely greatly outweighed by Adam’s
benefits.

2. Why does momentum really work?

We have the same kind of convergence problem that was mentioned in the above answer when
choosing the learning rate α. We want the largest learning rate possible without causing
issues with convergence.

The article “Why Momentum Really Works?” illustrates the point mathematically by making
an eigenvalue decomposition of two problems. These problems are simple enough that we can
essentially solve the problem in closed form by considering each parameter separately, and
the article shows how this can be used to find the general update rule for the model variables.
This turns out to limit the possible range of α by the minimum and maximum eigenvalues
of the feature matrix. When the analysis is repeated with the momentum update rule rather
than the plain update rule:

θt ← θt−1 − α∇f(θt−1) (Ordinary GD update rule){
zt ← βzt−1 +∇f(θt−1),

θt ← θt−1 − αzt
(Momentum GD update rules)

where zt is the weighted average after iteration t, then α can be increased further without
divergence, leading to faster divergence. When the learning rate α and the momentum coeffi-
cient β have optimal values, then the condition number κ (which indicates convergence rate,
lower is better) is roughly the square root of the κ without momentum (which means a much
faster convergence).

That approach is purely mathematical, but intuitive understanding is given by the layman’s
analogy in physics: a damped spring. α multiplied by the eigenvalues λi of the problem matrix
can be interpreted as an driving force, and β is analogous to the damping coefficient. As with
damped harmonic oscillator problems, there is an optimal β, which is the critically-damped
scenario. Without damping (and without manually decreasing α as t increases), it’s likely
that there will be large oscillations around complicated gradients such as “ravines” (leading
to slow convergence) and may settle in local minimas (leading to a nonoptimal solutions).
With momentum, however, we have some information about gradients from past iterations,
so we have a less-local view of the overall gradient topology and is less likely to have these
problems. These intuitive robustness of momentum translates to the mathematical advantage
of being able to increase the learning rate without having convergence issues.

2


