
ECE472 – Quiz 1

Jonathan Lam

September 9, 2020

1. Compare and contrast symbolic differentiation, numeric differentiation, and automatic differ-
entiation.

Symbolic differentiation This provides a (usually closed-form) expression for the deriva-
tive of an expression w.r.t. (some or all of) its input variables. This has the benefits
of being mathematically exact and easy to interpret; having the closed form expression
for a derivative may be useful, e.g., for finding extrema (zeros of the derivative expres-
sion) analytically. However, this suffers from expression swell (since repeated chain rule
on complex expressions can quickly make the expression grow very long), which can
take a lot of memory and lead to many repeated calculations. This also suffers from
manipulating code to generate the derivative expression, which may be unwieldy.

Numeric differentiation This approximates the derivative using a difference quotient. While
this is faster than symbolic differentiation for complex expressions, it is very prone to
error. The error not only grows with the length of the calculation, but round-off and
truncation errors occur due to the inherent nature of the derivative being defined as a
limit where the denominator approaches zero, and of the limited size of numeric types
on computers.

Automatic differentiation This is the preferred way of doing differentiation of an expres-
sion with respect to its inputs and outputs, since it provides exact values like symbolic
differentiation (within the limits of numeric types) and provides only constant-time over-
head for each input variable (like numeric differentiation). This works by performing the
same calculations as symbolic differentiation (and therefore producing an identical re-
sult), but not storing or calculating the entire derivative expression. Rather, it only
stores the values of subexpressions and their derivatives (at a small memory overhead),
which can be used by the chain rule to calculate the derivatives of larger subexpressions
(in forward accumulation mode; the chain rule is applied in a slightly different way in
reverse accumulation mode).

1



2. Compare and contrast forward-mode automatic differentiation with reverse-mode automatic
differentiation.

Any particular expression s has a series of constants and variables (the most primitive subex-
pressions) and a hierarchical tree of subexpressions. Except for the entire expression s, each
subexpression s1 is combined with another subexpression s2 to form another subexpression
s3 (in the case of a binary expression, but it is not hard to see how this would work with
operations with different arities). To calculate the value of the subexpression s3, we have to
know (i.e., calculate and store) the values of s1 and s2 before hand; so we always evaluate
expressions from the inside-out, calculating more primitive subexpressions before being able
to calculate the value of the expressions that depend on them.

Forward-mode autodiff works the same way. Assume there is a variable x, and we want to
find ∂s3

∂x . Instead of only requiring the values of s1 and s2 before calculating this partial

derivative, we also have to know ∂s1
∂x , ∂s2

∂x , ∂s3
∂s1

, and ∂s3
∂s2

, since the chain rule states:

∂s3
∂x

=
∂s3
∂s1

∂s1
∂x

+
∂s3
∂s2

∂s2
∂x

The latter two depends on the operation being performed on s1 and s2 to form s3, and the
former two have already been calculated by performing this kind of calculation recursively
from the lower expressions upwards.

This is straightforward because it is a direct application of the chain rule, but it involves
calculating and recording the partial derivatives of every intermediate value w.r.t. each input
variable. Reverse-mode differentiation is different in that we can aggregate the values in the
opposite direction: the same chain rule equation above can be accumulated in reverse. For
example, imagine that there is a subexpression s4, which is used directly in subexpressions
s5, s6, and s7. This gives the following equation (also by chain rule), which looks similar to
the above equation. (It’s still chain rule, but from the output variable’s perspective.)

∂y

∂s4
=

∂y

∂s5

∂s5
∂s4

+
∂y

∂s6

∂s6
∂s4

+
∂y

s7

∂s7
∂s4

Algorithmically, we start from calculating the partial derivatives of the subexpressions that y
is directly dependent on through this relation. Then, we can move “backwards”: in this case,
we calculate ∂y

∂s4
based on the partial derivatives of its dependencies, i.e., ∂y

∂s5
, ∂y

∂s6
, and ∂y

∂s7
.

Why do this? While forward accumulation builds up partial derivatives for each subexpres-
sion w.r.t. each input variable, reverse accumulation builds up partial derivatives for each
subexpression w.r.t. each output variable. Since we usually have many more features than
output variables, the former is much more expensive and calculates a lot of values we don’t
need, since we don’t care about the partial derivatives of each of the subexpressions w.r.t.
input variables.

2


