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Project description: Training a (ResNet) CNN on CIFAR-10, CIFAR-100. CIFAR-10 accuracy
should be state-of-the-art, and CIFAR-100 top-5 accuracy should be at least 80%.
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1 Model

1.1 Dataset

CIFAR datasets were the Python datasets downloaded from [I]. Each dataset was already split
into 50000/10000 train/test. Images are 32x32 color images, and the (categorical) labels are 0-9
for CIFAR-10 and 0-99 (“fine labels”) for CIFAR-100. The samples are equally split between the

different categories.

1.2 Image preprocessing

The pixel values were manually standardized to a N(0,1) distribution, and then augmented us-
ing tf.keras.preprocesssing.image.ImageDataGenerator. This involves slight shifting, vertical and
horizontal flipping, and some angle rotation. See the source code for more details.

1.3 Structure

I used the structure of ResNet-34, pictured in Figure [T} as rough guidance for what an overall
network structure should look like. In the end, the number of filters per layer and the number of
layers was varied to try to decrease training time and increase accuracy.
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Figure 1: ResNet-34 overall structure. Source: [4]

1.4 ResNet blocks

The individual blocks were the improved ResNet units described in [3]. Namely, these were the
“pre-activation” ResNet blocks proposed in that paper, pictured in Figure [2]

In my model, ELUs were used in the place of ReLUs, similarly to the last project. There was
also a dropout layer at the end of every ResNet unit for regularization. The he-normal initialization
method was used for convolutional layer weights.

1.5 Regularization

A small dropout regularization was performed in each ResNet block. This doesn’t show up in the
ResNet papers [2, [3], but I wanted to try using it since we covered it in class.

Similar to the MNIST classification project, L2 regularization was performed on the weights
(this time for the filters on the convolutional layers).

Since the accuracy (CIFAR-10) and top-5 accuracy (CIFAR-100) were similar between the train-
ing and test datasets, I believe that this level of regularization is sufficient. In this particular training
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Figure 2: ResNet block structure. (a) The original structure proposed in the original ResNet
formulation [2]; (b) The improved structure proposed in [3]. Source: [3]

case for CIFAR-10, the test dataset accuracy is slightly higher than the training dataset accuracy
(93.42% on the test dataset as opposed to 90.22% on the training dataset), which is just due to
chance.

1.6 Hyperparameter selection/tuning

Hyperparameters were selected manually (see Figure [3) and was not tuned systematically by a
builtin tuner like kerastuner on a validation set. The reasoning for this is given in the following
section (i.e., time constraints). With more time performance could probably be improved further
with hyperparameter tuning.

1.7 Differences between CIFAR-10 and CIFAR-100 models

The model used was between the two models was the same, except that the final dense layer had
different widths due to the nature of softmax (10 for CIFAR-10, and 100 for CIFAR-100). The only
differences were in the data entry (i.e., different filenames, and for CIFAR-100 we were looking at
the “fine labels” field rather than the “labels” field of the input) and in the model evaluation: for
CIFAR-10, the performance metric was classification accuracy; for CIFAR-100, the performance
metric was top-5 classification accuracy.

2 Notes on implementation and training

e Most of the training was performed on Google Colab. Initially (and for all of the previ-
ous projects), I had been running the Python code on my desktop computer (i7-2600, no
TensorFlow-compatible GPU) and laptop (i7-7500U, no TensorFlow-compatible GPU), both



Hyperparameter

Selected value

Justification

L2 coefficient

0.0001

The default value for tf.keras.regularizers.L2 is
0.01 but that seemed to make the convergence much
slower. Choosing a much smaller value did the trick.

Learning rate (Adam)

0.001(0.99)epoch

I had originally used the Adam optimizer with its de-
fault learning rate, but manually changing the max-
imum learning rate seemed to help with convergence
with higher epochs.

ResNet blocks

12

ResNet-34 includes 17 ResNet blocks, but I reduced
the number to try to reduce epoch time. It still meets
the desired results after 100 epochs.

# Filters

32, 64, 128

Similar to ResNet-34, as you go deeper in the net-
work you have a higher number of filters for convolu-
tional layers. I chose smaller values so that it would
train faster.

Epochs

100

I guess this could be “set” using early stopping, but
using the fixed value of 100 epochs was able to get
both models to approximately 90% accuracy, which
was good enough.

Figure 3: Hyperparameter selection justification

of which were greatly outperformed by running on Colab with a GPU. For example, an epoch
that ran in roughly three minutes on my desktop ran in roughly 30 seconds on Colab.

e | did not implement cross-validation on a holdout set for hyperparameter tuning. Thus all
of the hyperparameters were manually set as I tried to improve the model. This was due to
time and hardware constraints, namely:

— When training locally, the training time was very slow (a few hours).

— When running on Google Colab, there is a timeout period, which means that I have to
be constantly checking on the notebook (or have a script periodically ping the page).
This was somewhat unreliable and required a lot of manual attention for long-running
training sessions.

— Tuning with kerastuner.Hyperband (as I did for the previous project) would require many
more times the training time than a single train. Because of the short time span of this
assignment and the little time that I had to work on it due to other classes, I was more
focused on making larger improvements to the network (in order to meet the assignment
goal on the test dataset) rather than making fine adjustments that would take a very
long time to figure out by validation.

3 Results

Both the CIFAR-10 and CIFAR-100 were trained over 100 epochs. The classification accuracy
on CIFAR-10 was 93.42%, and the top-5 classification accuracy on CIFAR-100 was 88.40%. This



achieves the goal of 80% top-5 classification accuracy on CIFAR-100. According to benchmarks.ai
[5], the top state-of-the-art models train at 99% test accuracy, which is far higher than what is
achieved here. This might have been truly state-of-the-art around 2013 through 2017, in which
the top accuracy was below 98%, but more recent models have achieved between 98% to 99% test
accuracy.

This accuracy is comparable to that reported in [2] on CIFAR-10, which reported a 6.43% error
(93.57% accuracy) with a 110-layer ResNet. The improved ResNet units (that my model is more
closely based on) achieved a 5.46% error (94.54% accuracy) with a 164-layer ResNet architecture.

The time it takes to train the model on Google Colab with GPU enabled is roughly 43 seconds
per epoch, so each model takes roughly 4300 seconds, or 71 minutes, to train.

4 Acknowledgments
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5 Source code

5.1 Setup

import numpy as np

import tensorflow as tf

import matplotlib.pyplot as plt
import pickle

train_imgs = np.zeros((0, 3072))
train_lbls = []

5.2 Data entry (CIFAR-10)

# train datasets; split up into 6 training batches
for i in range(l, 6):

with open ('./data_batch_' + str(i), 'rb') as file:
file_data = pickle.load(file, encoding='bytes')
train_imgs = np.vstack((train_imgs, file_data[b'data']l))

train_lbls += file_data[b'labels']

train_1lbls = tf.keras.utils.to_categorical (np.array(train_1lbls))
train_imgs = train_imgs.reshape (-1, 3, 32, 32)
train_imgs = np.moveaxis(train_imgs, 1, -1)

# standardize data
train_imgs = (train_imgs - np.mean(train_imgs)) / np.std(train_imgs)

# test dataset



with open('./test_batch', 'rb') as file:
file_data = pickle.load(file, encoding='bytes')
test_imgs = file_datal[b'data'].reshape(-1, 3, 32, 32)
test_1lbls = tf.keras.utils.to_categorical (np.array(file_data[b'labels']))
test_imgs = np.moveaxis(test_imgs, 1, -1)
test_imgs = (test_imgs - np.mean(test_imgs)) / np.std(test_imgs)

5.3 Data entry (CIFAR-100)

# train datasets

with open('./train', 'rb') as file:
file_data = pickle.load(file, encoding='bytes"')
train_imgs = np.vstack((train_imgs, file_datal[b'data']))
train_1lbls += file_datal[b'fine_ labels']

train_1lbls tf.keras.utils.to_categorical (np.array(train_1lbls))
train_imgs = train_imgs.reshape (-1, 3, 32, 32)
train_imgs = np.moveaxis(train_imgs, 1, -1)

# standardize data
train_imgs = (train_imgs - np.mean(train_imgs)) / np.std(train_imgs)

# test dataset
with open('./test', 'rb') as file:
file_data = pickle.load(file, encoding='bytes')
test_imgs = file_datal[b'data'].reshape (-1, 3, 32, 32)
test_1lbls = tf.keras.utils.to_categorical (np.array(file_data([b'fine_labels']))
test_imgs = np.moveaxis(test_imgs, 1, -1)
test_imgs = (test_imgs - np.mean(test_imgs)) / np.std(test_imgs)

5.4 Model
This is the code for the CIFAR-100 model. Two changes are made for the CIFAR-10 case:

e The last dense layer should have a width of 10.

e The model metric should be changed from top-5 accuracy to accuracy.

# initial number of filters for "first stage"; will be doubled twice
# as you progress deeper into the network

num_filters = 32

# for now, layers should be a multiple of 3

layers = 12

# input: 32x32x3 (3 = # color channels)
input = tf.keras.Input (shape=(32, 32, 3))

# do an initial convolution layer to increase dimensionality
x = tf.keras.layers.Conv2D (filters=num_filters,
kernel_size=7,
strides=1,
padding="'same',




kernel_regularizer=tf.keras.regularizers.1l2(le-6),
kernel initializer='he_ normal') (input)

for i in range(layers):

# increase number of filters twice as you go deeper in the network
# 1x1 convolutional layer to change dimensionality
if i > 0 and i % (layers / 3) ==
num_filters »= 2
x = tf.keras.layers.Conv2D (filters=num_filters,
kernel_size=1,
padding="'same',
kernel_regularizer=tf.keras.regularizers.l1l2(le-6),
kernel_initializer="'he_normal') (x)

# first batchnorm, activation, conv2d
unit = tf.keras.layers.BatchNormalization () (x)
unit = tf.keras.layers.ReLU() (unit)

# in first layer of a "block," no skip connection and use 2x2 strides to
# decrease image dimensions, see ResNet-34 diagram; for other units, add a
# skip connection
if i > 0 and i % (layers / 3) ==
unit = tf.keras.layers.Conv2D (filters=num_filters,
kernel_size=3,
padding="'same',
strides=2,
kernel_regularizer=tf.keras.regularizers.l2(le-6)
kernel_initializer='he_normal') (unit)
X = unit
else:
unit = tf.keras.layers.Conv2D (filters=num_filters,
kernel_size=3,
padding="'same',
kernel_regularizer=tf.keras.regularizers.1l2 (le-6)
4
kernel_initializer='he_normal') (unit)
x = tf.keras.layers.Add() ([x, unit])

# second batchnorm, activation, conv2d

unit = tf.keras.layers.BatchNormalization () (x)
unit = tf.keras.layers.ReLU() (unit)
unit = tf.keras.layers.Conv2D (filters=num_filters,

kernel_size=3,
padding="'same',
kernel_initializer='he_normal',
kernel_ regularizer=tf.keras.regularizers.1l2(le-6)) (
unit)
unit = tf.keras.layers.Dropout (rate=0.1) (unit)
x = tf.keras.layers.Add() ([x, unit])

final part: batchnorm, pooling, dense layer (logits for softmax)
= tf.keras.layers.BatchNormalization () (x)

= tf.keras.layers.AveragePooling2D (pool_size=8) (x)

= tf.keras.layers.Flatten() (x)

XX X Sk

# for CIFAR-100, units=100; for CIFAR-10, units=10




x = tf.keras.layers.Dense (units=100,
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.L1L2 (12=1e-6)) (x)

model = tf.keras.models.Model (inputs=[input], outputs=x)

# set up model loss and optimizer

# for CIFAR-100, tf.keras.metrics.TopKCategoricalAccuracy (k=5);

# for CIFAR-10, use 'accuracy'

model.compile (
optimizer=tf.keras.optimizers.Adam(learning_rate=1le-3),
loss=tf.keras.losses.CategoricalCrossentropy (from_logits=True),
metrics=[tf.keras.metrics.TopKCategoricalAccuracy (k=5)1)

5.5 Image preprocessing/augmentation and training

# feature preprocessing

datagen = tf.keras.preprocessing.image.ImageDataGenerator (
featurewise_center=False,
samplewise_center=False,
featurewise_std_normalization=False,
samplewise_std_normalization=False,
rotation_range=30,
width_shift_range=0.1,
height_shift_range=0.1,
fill_mode='nearest',
horizontal_flip=True,
vertical_ flip=True,

# training
datagen.fit (train_imgs)

def learning_rate_scheduler (epoch) :
return le-3 x 0.99xxepoch

model.fit_generator (datagen.flow(train_imgs, train_lbls),
callbacks=[tf.keras.callbacks.LearningRateScheduler (
learning_rate_scheduler) ],
epochs=100, verbose=1l)

5.6 Model evaluation

print ('Evaluating on test dataset')
model.evaluate (test_imgs, test_1lbls)

6 Code output
6.1 CIFAR-10
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accuracy:

accuracy:

accuracy:

accuracy:

accuracy:

0.8363

0.8400

0.8389

0.8432

0.8437

0.8472

0.8469

0.8491

0.8515

0.8533

0.8543

0.8585

0.8576

0.8573

0.8603

0.8610

0.8631

0.8638

0.8651

0.8673

0.8671

0.8677

0.8700

0.8733

0.8725

0.8754

0.8766

0.8768

0.8783

0.8801

0.8827

0.8805

0.8846

0.8825

0.8838

0.8841

0.8863

0.8871

0.8868

0.8894

0.8895

0.8911

0.8912

0.8918

0.8942

0.8974




1563/1563 [

Epoch 93/100
1563/1563 [

Epoch 94/100
1563/1563 [

Epoch 95/100
1563/1563 [

Epoch 96/100
1563/1563 [

Epoch 97/100
1563/1563 [

Epoch 98/100
1563/1563 [

Epoch 99/100

1563/1563 [
Epoch 100/100

1563/1563 [
Evaluating on test dataset

313/313 [
[0.23870298266410828,

]
0.9341999888420105]

3s 9ms/step - loss:

27ms/step
27ms/step
27ms/step
27ms/step
27ms/step
27ms/step
27ms/step
27ms/step

27ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

0.

0.

0.

0.

0.

0.

0

3525

3511

3482

3459

3457

3423

3361

3396

.3362

0.2387 - accuracy:

accuracy: 0.8946
accuracy: 0.8954
accuracy: 0.8975
accuracy: 0.8988
accuracy: 0.8989
accuracy: 0.8996
accuracy: 0.9016
accuracy: 0.9005
accuracy: 0.9022
0.9342

6.2 CIFAR-100

Epoch 1/100
1563/1563 [

Epoch 2/100
1563/1563 [

Epoch 3/100
1563/1563 [

Epoch 4/100
1563/1563 [

Epoch 5/100
1563/1563 [

Epoch 6/100
1563/1563 [

Epoch 7/100
1563/1563 [

Epoch 8/100
1563/1563 [

Epoch 9/100

1563/1563 [
Epoch 10/100

1563/1563 [
Epoch 11/100

1563/1563 [
Epoch 12/100

1563/1563 [
Epoch 13/100

1563/1563 [
Epoch 14/100
1563/1563 [

Epoch 15/100
1563/1563 [

Epoch 16/100
1563/1563 [

Epoch 17/100
1563/1563 [

Epoch 18/100
1563/1563 [

Epoch 19/100
1563/1563 [

Epoch 20/100
1563/1563 [

Epoch 21/100
1563/1563 [

Epoch 22/100
1563/1563 [

Epoch 23/100

1563/1563 [
Epoch 24/100

1563/1563 [
Epoch 25/100

1563/1563 [
Epoch 26/100

1563/1563 [
Epoch 27/100

1563/1563 [
Epoch 28/100
1563/1563 [

Epoch 29/100
1563/1563 [

Epoch 30/100
1563/1563 [

Epoch 31/100
1563/1563 [

Epoch 32/100

27ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
28ms/step
27ms/step

28ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

SH

o

Bo

2

B

Ao

Bo

2o

2o

2

Ao

Bo

2

Bo

2

Ao

2

o

do

1

do

do

do

1

o

.0681
6597
3683
1648
9978
8675
7648
6732
5991
5330
4589
3976
3379
2853
.2403
1943
1394
0985
0604
.0263
9891
9609
9264
.8968
.8769
8459
8216
7960
L7752
L7529

7329
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top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:

top_k_categorical_accuracy:

0.2525

0.3778

0.4632

0.5156

0.5584

0.5908

0.6177

0.6388

0.6559

0.6707

0.6873

0.6997

0.7119

0.7228

0.7344

0.7417

0.7536

0.7650

0.7693

0.7773

0.7846

0.7893

0.7963

0.8026

0.8055

0.8112

0.8134

0.8205

0.8224

0.8265

0.8301




1563/1563 [

Epoch 33/100
1563/1563 [

Epoch 34/100
1563/1563 [

Epoch 35/100
1563/1563 [

Epoch 36/100
1563/1563 [

Epoch 37/100
1563/1563 [

Epoch 38/100
1563/1563 [

Epoch 39/100

1563/1563 [
Epoch 40/100

1563/1563 [
Epoch 41/100

1563/1563 [
Epoch 42/100

1563/1563 [
Epoch 43/100

1563/1563 [
Epoch 44/100
1563/1563 [

Epoch 45/100
1563/1563 [

Epoch 46/100
1563/1563 [

Epoch 47/100
1563/1563 [

Epoch 48/100
1563/1563 [

Epoch 49/100
1563/1563 [

Epoch 50/100
1563/1563 [

Epoch 51/100
1563/1563 [

Epoch 52/100
1563/1563 [

Epoch 53/100

1563/1563 [
Epoch 54/100

1563/1563 [
Epoch 55/100

1563/1563 [
Epoch 56/100

1563/1563 [
Epoch 57/100

1563/1563 [
Epoch 58/100
1563/1563 [

Epoch 59/100
1563/1563 [

Epoch 60/100
1563/1563 [

Epoch 61/100
1563/1563 [

Epoch 62/100
1563/1563 [

Epoch 63/100
1563/1563 [

Epoch 64/100
1563/1563 [

Epoch 65/100
1563/1563 [

Epoch 66/100
1563/1563 [

Epoch 67/100

1563/1563 [
Epoch 68/100

1563/1563 [
Epoch 69/100

1563/1563 [
Epoch 70/100

1563/1563 [
Epoch 71/100

1563/1563 [
Epoch 72/100

1563/1563 [
Epoch 73/100
1563/1563 [

Epoch 74/100
1563/1563 [

Epoch 75/100
1563/1563 [

Epoch 76/100
1563/1563 [

Epoch 77/100
1563/1563 [

Epoch 78/100

27ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
27ms/step
27ms/step
28ms/step
27ms/step
27ms/step
28ms/step
27Tms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
28ms/step
28ms/step
27Tms/step
28ms/step
27ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
28ms/step
27ms/step
28ms/step
27ms/step
27ms/step
28ms/step
28ms/step
27ms/step
28ms/step
27ms/step
28ms/step
27ms/step
27ms/step

28ms/step

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

o

1

o

do

1

1

do

do

1

o

do

do

do

o

ilo

o

do

do

1.

1

do

do

1.

ibo

o

do

do

do

1.

do

do

do

1.

1

do

do

1.

1

7136
6925
.6768
6568
6362
6228
L6114
.5943
BE7ISI
5627
5467
.5284
L5174
4951
4918
4754
4596
4506
4426
4234
4232
4075
L4013
3845
.3836
3690
3541
.3458
3425
3249
3209
3073
2956
2907
2829
2730
2616
2598
2408
2406
.2295
2252
2168
2135
1976

.1951
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top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:
top_k_categorical_accuracy:

top_k_categorical_accuracy:

0.8319

0.8377

0.8409

0.8439

0.8465

0.8509

0.8527

0.8555

0.8586

0.8592

0.8631

0.8651

0.8640

0.8711

0.8701

0.8723

0.8756

0.8773

0.8788

0.8806

0.8805

0.8847

0.8854

0.8884

0.8878

0.8905

0.8906

0.8937

0.8939

0.8953

0.8963

0.8980

0.9012

0.9019

0.9024

0.9028

0.9049

0.9054

0.9087

0.9088

0.9095

0.9109

0.9125

0.9114

0.9138

0.9131




1563/1563 [

Epoch 79/100

1563/1563 [
Epoch 80/100
1563/1563 [

Epoch 81/100
1563/1563 [

Epoch 82/100

1563/1563 [
Epoch 83/100
1563/1563 [

Epoch 84/100

1563/1563 [
Epoch 85/100
1563/1563 [

Epoch 86/100
1563/1563 [

Epoch 87/100

1563/1563 [
Epoch 88/100
1563/1563 [

Epoch 89/100
1563/1563 [

Epoch 90/100
1563/1563 [

Epoch 91/100
1563/1563 [

Epoch 92/100

1563/1563 [
Epoch 93/100
1563/1563 [

Epoch 94/100
1563/1563 [

Epoch 95/100

1563/1563 [
Epoch 96/100
1563/1563 [

Epoch 97/100

1563/1563 [
Epoch 98/100
1563/1563 [

Epoch 99/100
1563/1563 [

Epoch 100/100

1563/1563 [
Evaluating on test dataset
313/313 [

[1.5469876527786255,

1 - 43s 28ms/step
1 - 43s 27ms/step
] - 43s 28ms/step
] - 43s 27ms/step
] - 43s 27ms/step
] - 43s 28ms/step
1 - 43s 27ms/step
] - 43s 27ms/step
] - 43s 27ms/step
] - 43s 28ms/step
] - 43s 27ms/step
1 - 43s 27ms/step
] - 43s 27ms/step
] - 43s 28ms/step
] - 43s 28ms/step
] - 43s 27ms/step
1 - 43s 27ms/step
1 - 43s 27ms/step
] - 43s 27ms/step
] - 43s 27ms/step
] - 43s 28ms/step
] - 43s 27ms/step

1 - 43s 27ms/step

] - 3s 8ms/step - loss:
0.8840000033378601]

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

loss:

&

o

o

=

.

-

o

o

=

=

-

o

o

=

=

-

&

o

o

=

.

do

do

.1925 - top_k_categorical_accuracy: 0
.1755 - top_k_categorical_accuracy: 0
.1669 - top_k_categorical_accuracy: 0
.1592 - top_k_categorical_accuracy: 0
.1631 - top_k_categorical_accuracy: 0
.1433 - top_k_categorical_accuracy: 0
.1510 - top_k_categorical_accuracy: 0
.1361 - top_k_categorical_accuracy: 0
.1320 - top_k_categorical_accuracy: 0
.1281 - top_k_categorical_accuracy: 0
.1182 - top_k_categorical_accuracy: 0
.1142 - top_k_categorical_accuracy: 0
.1017 - top_k_categorical_accuracy: 0
.1026 - top_k_categorical_accuracy: 0
.0994 - top_k_categorical_accuracy: 0
.0958 - top_k_categorical_accuracy: 0
.0832 - top_k_categorical_accuracy: 0
.0741 - top_k_categorical_accuracy: 0
.0705 - top_k_categorical_accuracy: 0
.0670 - top_k_categorical_accuracy: 0
.0651 - top_k_categorical_accuracy: 0
0631 - top_k_categorical_accuracy: 0
0502 - top_k_categorical_accuracy: 0
1.5470 - top_k_categorical_accuracy: 0.8840

EOIR310

.9180

.9181

.9186

.9184

o 9L

.9204

.9218

.9218

.9226

.9245

.9263

.9282

.9276

.9276

.9259

.9289

.9303

.9303

.9307

.9313

.9323

.9328
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