ECE472 – Project 4

Jonathan Lam

October 1, 2020

Project description: Training a (ResNet) CNN on CIFAR-10, CIFAR-100. CIFAR-10 accuracy should be state-of-the-art, and CIFAR-100 top-5 accuracy should be at least 80%.

Contents

1	Model	2
	1.1 Dataset	2
	1.2 Image preprocessing	2
	1.3 Structure	2
	1.4 ResNet blocks	2
	1.5 Regularization	2
	1.6 Hyperparameter selection/tuning	3
	1.7 Differences between CIFAR-10 and CIFAR-100 models	3
2	Notes on implementation and training	3
3	Results	4
4	Acknowledgments	5
5	Source code	5
	5.1 Setup	5
	5.2 Data entry (CIFAR-10)	5
	5.3 Data entry (CIFAR-100)	6
	5.4 Model	6
	5.5 Image preprocessing/augmentation and training	8
	5.6 Model evaluation	8
6	Code output	8
	-	8
	6.2 CIFAR-100	11

1 Model

1.1 Dataset

CIFAR datasets were the Python datasets downloaded from [1]. Each dataset was already split into 50000/10000 train/test. Images are 32x32 color images, and the (categorical) labels are 0-9 for CIFAR-10 and 0-99 ("fine labels") for CIFAR-100. The samples are equally split between the different categories.

1.2 Image preprocessing

The pixel values were manually standardized to a N(0,1) distribution, and then augmented using tf.keras.preprocesssing.image.ImageDataGenerator. This involves slight shifting, vertical and horizontal flipping, and some angle rotation. See the source code for more details.

1.3 Structure

I used the structure of ResNet-34, pictured in Figure 1, as rough guidance for what an overall network structure should look like. In the end, the number of filters per layer and the number of layers was varied to try to decrease training time and increase accuracy.

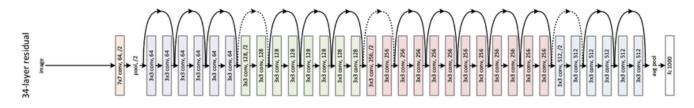


Figure 1: ResNet-34 overall structure. Source: [4]

1.4 ResNet blocks

The individual blocks were the improved ResNet units described in [3]. Namely, these were the "pre-activation" ResNet blocks proposed in that paper, pictured in Figure 2.

In my model, ELUs were used in the place of ReLUs, similarly to the last project. There was also a dropout layer at the end of every ResNet unit for regularization. The he-normal initialization method was used for convolutional layer weights.

1.5 Regularization

A small dropout regularization was performed in each ResNet block. This doesn't show up in the ResNet papers [2, 3], but I wanted to try using it since we covered it in class.

Similar to the MNIST classification project, L2 regularization was performed on the weights (this time for the filters on the convolutional layers).

Since the accuracy (CIFAR-10) and top-5 accuracy (CIFAR-100) were similar between the training and test datasets, I believe that this level of regularization is sufficient. In this particular training

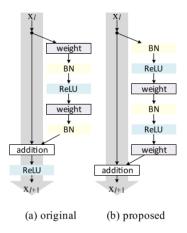


Figure 2: ResNet block structure. (a) The original structure proposed in the original ResNet formulation [2]; (b) The improved structure proposed in [3]. Source: [3]

case for CIFAR-10, the test dataset accuracy is slightly higher than the training dataset accuracy (93.42% on the test dataset as opposed to 90.22% on the training dataset), which is just due to chance.

1.6 Hyperparameter selection/tuning

Hyperparameters were selected manually (see Figure 3) and was not tuned systematically by a builtin tuner like kerastuner on a validation set. The reasoning for this is given in the following section (i.e., time constraints). With more time performance could probably be improved further with hyperparameter tuning.

1.7 Differences between CIFAR-10 and CIFAR-100 models

The model used was between the two models was the same, except that the final dense layer had different widths due to the nature of softmax (10 for CIFAR-10, and 100 for CIFAR-100). The only differences were in the data entry (i.e., different filenames, and for CIFAR-100 we were looking at the "fine labels" field rather than the "labels" field of the input) and in the model evaluation: for CIFAR-10, the performance metric was classification accuracy; for CIFAR-100, the performance metric was top-5 classification accuracy.

2 Notes on implementation and training

• Most of the training was performed on Google Colab. Initially (and for all of the previous projects), I had been running the Python code on my desktop computer (i7-2600, no TensorFlow-compatible GPU) and laptop (i7-7500U, no TensorFlow-compatible GPU), both

Hyperparameter	Selected value	Justification						
L2 coefficient	0.0001	The default value for tf.keras.regularizers.L2						
		0.01 but that seemed to make the convergence much						
		slower. Choosing a much smaller value did the trick.						
Learning rate (Adam)	$0.001(0.99)^{\text{epoch}}$	I had originally used the Adam optimizer with its de-						
		fault learning rate, but manually changing the max-						
		imum learning rate seemed to help with convergence						
		with higher epochs.						
ResNet blocks	12	ResNet-34 includes 17 ResNet blocks, but I reduced						
		the number to try to reduce epoch time. It still meets						
		the desired results after 100 epochs.						
# Filters	32, 64, 128	Similar to ResNet-34, as you go deeper in the net-						
		work you have a higher number of filters for convolu-						
		tional layers. I chose smaller values so that it would						
		train faster.						
Epochs	100	I guess this could be "set" using early stopping, but						
		using the fixed value of 100 epochs was able to get						
		both models to approximately 90% accuracy, which						
		was good enough.						

Figure 3: Hyperparameter selection justification

of which were greatly outperformed by running on Colab with a GPU. For example, an epoch that ran in roughly three minutes on my desktop ran in roughly 30 seconds on Colab.

- I did not implement cross-validation on a holdout set for hyperparameter tuning. Thus all of the hyperparameters were manually set as I tried to improve the model. This was due to time and hardware constraints, namely:
 - When training locally, the training time was very slow (a few hours).
 - When running on Google Colab, there is a timeout period, which means that I have to be constantly checking on the notebook (or have a script periodically ping the page). This was somewhat unreliable and required a lot of manual attention for long-running training sessions.
 - Tuning with kerastuner.Hyperband (as I did for the previous project) would require many more times the training time than a single train. Because of the short time span of this assignment and the little time that I had to work on it due to other classes, I was more focused on making larger improvements to the network (in order to meet the assignment goal on the test dataset) rather than making fine adjustments that would take a very long time to figure out by validation.

3 Results

Both the CIFAR-10 and CIFAR-100 were trained over 100 epochs. The classification accuracy on CIFAR-10 was 93.42%, and the top-5 classification accuracy on CIFAR-100 was 88.40%. This

achieves the goal of 80% top-5 classification accuracy on CIFAR-100. According to benchmarks.ai [5], the top state-of-the-art models train at 99% test accuracy, which is far higher than what is achieved here. This might have been truly state-of-the-art around 2013 through 2017, in which the top accuracy was below 98%, but more recent models have achieved between 98% to 99% test accuracy.

This accuracy is comparable to that reported in [2] on CIFAR-10, which reported a 6.43% error (93.57% accuracy) with a 110-layer ResNet. The improved ResNet units (that my model is more closely based on) achieved a 5.46% error (94.54% accuracy) with a 164-layer ResNet architecture.

The time it takes to train the model on Google Colab with GPU enabled is roughly 43 seconds per epoch, so each model takes roughly 4300 seconds, or 71 minutes, to train.

4 Acknowledgments

- Yuval Ofek Showed me the power of running on Colab GPUs rather than running it locally.
- Mark Kozykowski Shared insights on some model improvements, e.g., image preprocessing with keras.preprocessing.image.ImageDataGenerator and using tf.keras.callbacks.LearningRateScheduler to adjust the maximum learning rate.

5 Source code

5.1 Setup

```
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
import pickle
train_imgs = np.zeros((0, 3072))
train_lbls = []
```

5.2 Data entry (CIFAR-10)

```
# train datasets; split up into 6 training batches
for i in range(1, 6):
    with open('./data_batch_' + str(i), 'rb') as file:
        file_data = pickle.load(file, encoding='bytes')
        train_imgs = np.vstack((train_imgs, file_data[b'data']))
        train_lbls += file_data[b'labels']
train_lbls = tf.keras.utils.to_categorical(np.array(train_lbls))
train_imgs = train_imgs.reshape(-1, 3, 32, 32)
train_imgs = np.moveaxis(train_imgs, 1, -1)
# standardize data
train_imgs = (train_imgs - np.mean(train_imgs)) / np.std(train_imgs)
# test dataset
```

```
with open('./test_batch', 'rb') as file:
    file_data = pickle.load(file, encoding='bytes')
    test_imgs = file_data[b'data'].reshape(-1, 3, 32, 32)
    test_lbls = tf.keras.utils.to_categorical(np.array(file_data[b'labels']))
    test_imgs = np.moveaxis(test_imgs, 1, -1)
    test_imgs = (test_imgs - np.mean(test_imgs)) / np.std(test_imgs)
```

5.3 Data entry (CIFAR-100)

```
# train datasets
with open('./train', 'rb') as file:
   file_data = pickle.load(file, encoding='bytes')
   train_imgs = np.vstack((train_imgs, file_data[b'data']))
   train_lbls += file_data[b'fine_labels']
train_lbls = tf.keras.utils.to_categorical(np.array(train_lbls))
train_imgs = train_imgs.reshape(-1, 3, 32, 32)
train_imgs = np.moveaxis(train_imgs, 1, -1)
# standardize data
train_imgs = (train_imgs - np.mean(train_imgs)) / np.std(train_imgs)
# test dataset
with open('./test', 'rb') as file:
   file_data = pickle.load(file, encoding='bytes')
   test_imgs = file_data[b'data'].reshape(-1, 3, 32, 32)
   test_lbls = tf.keras.utils.to_categorical(np.array(file_data[b'fine_labels']))
   test_imgs = np.moveaxis(test_imgs, 1, -1)
   test_imgs = (test_imgs - np.mean(test_imgs)) / np.std(test_imgs)
```

5.4 Model

This is the code for the CIFAR-100 model. Two changes are made for the CIFAR-10 case:

- The last dense layer should have a width of 10.
- The model metric should be changed from top-5 accuracy to accuracy.

```
kernel_regularizer=tf.keras.regularizers.l2(1e-6),
                           kernel_initializer='he_normal') (input)
for i in range(layers):
    # increase number of filters twice as you go deeper in the network
    # 1x1 convolutional layer to change dimensionality
   if i > 0 and i % (layers / 3) == 0:
       num_filters *= 2
       x = tf.keras.layers.Conv2D(filters=num_filters,
                                   kernel_size=1,
                                   padding='same',
                                   kernel_regularizer=tf.keras.regularizers.l2(1e-6),
                                   kernel_initializer='he_normal') (x)
    # first batchnorm, activation, conv2d
   unit = tf.keras.layers.BatchNormalization()(x)
   unit = tf.keras.layers.ReLU()(unit)
    # in first layer of a "block," no skip connection and use 2x2 strides to
    # decrease image dimensions, see ResNet-34 diagram; for other units, add a
    # skip connection
   if i > 0 and i % (layers / 3) == 0:
       unit = tf.keras.layers.Conv2D(filters=num_filters,
                                      kernel_size=3,
                                      padding='same',
                                      strides=2,
                                      kernel_regularizer=tf.keras.regularizers.l2(1e-6)
                                      kernel_initializer='he_normal') (unit)
       x = unit
    else:
       unit = tf.keras.layers.Conv2D(filters=num_filters,
                                      kernel size=3,
                                      padding='same',
                                      kernel_regularizer=tf.keras.regularizers.l2(1e-6)
                                      kernel_initializer='he_normal') (unit)
        x = tf.keras.layers.Add()([x, unit])
    # second batchnorm, activation, conv2d
   unit = tf.keras.layers.BatchNormalization()(x)
   unit = tf.keras.layers.ReLU()(unit)
   unit = tf.keras.layers.Conv2D(filters=num_filters,
                                  kernel_size=3,
                                  padding='same',
                                  kernel_initializer='he_normal',
                                  kernel_regularizer=tf.keras.regularizers.l2(1e-6))(
                                      unit)
   unit = tf.keras.layers.Dropout(rate=0.1)(unit)
   x = tf.keras.layers.Add()([x, unit])
# final part: batchnorm, pooling, dense layer (logits for softmax)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.AveragePooling2D(pool_size=8)(x)
x = tf.keras.layers.Flatten()(x)
# for CIFAR-100, units=100; for CIFAR-10, units=10
```

5.5 Image preprocessing/augmentation and training

```
# feature preprocessing
datagen = tf.keras.preprocessing.image.ImageDataGenerator(
   featurewise_center=False,
   samplewise_center=False,
   featurewise_std_normalization=False,
   samplewise_std_normalization=False,
   rotation_range=30,
   width_shift_range=0.1,
   height_shift_range=0.1,
   fill_mode='nearest',
   horizontal_flip=True,
   vertical_flip=True,
)
# training
datagen.fit(train_imgs)
def learning_rate_scheduler(epoch):
   return 1e-3 * 0.99**epoch
model.fit_generator(datagen.flow(train_imgs, train_lbls),
                    callbacks=[tf.keras.callbacks.LearningRateScheduler(
                        learning_rate_scheduler)],
                    epochs=100, verbose=1)
```

5.6 Model evaluation

```
print('Evaluating on test dataset')
model.evaluate(test_imgs, test_lbls)
```

6 Code output

6.1 CIFAR-10

Epoch 1/100							
1563/1563 [=====]	-	44s	28ms/step - loss	: 1.7498	B -	accuracy:	0.3513
Epoch 2/100							
1563/1563 [=====]	-	43s	28ms/step - loss	: 1.4927	7 –	accuracy:	0.4610
Epoch 3/100							
1563/1563 [=====]	-	43s	28ms/step - loss	: 1.3685	5 -	accuracy:	0.5118
Epoch 4/100				1 000	~		0.5470
1563/1563 [======] Epoch 5/100	-	455	Zoms/step - ioss	: 1.2800	0 -	accuracy:	0.5475
1563/1563 [=====]	_	439	28ms/step - loss	• 1 2195	5 -	accuracy.	0 5708
Epoch 6/100			2000,0000 2000		5	accuracy.	0.0,000
1563/1563 [=====]	-	43s	28ms/step - loss	: 1.1637	7 -	accuracy:	0.5912
Epoch 7/100			*			*	
1563/1563 [=====]	-	43s	28ms/step - loss	: 1.1174	4 -	accuracy:	0.6063
Epoch 8/100							
1563/1563 [=====] Epoch 9/100	-	43s	28ms/step - loss	: 1.0714	4 -	accuracy:	0.6274
1563/1563 [=====]		120	20mg/stop loss	. 1 0210	n		0 6421
Epoch 10/100		455	20105/Step - 1055	. 1.0510	5 -	accuracy.	0.0421
1563/1563 [=====]	-	43s	28ms/step - loss	: 0.9921	1 -	accuracy:	0.6576
Epoch 11/100			*			*	
1563/1563 [=====]	-	43s	28ms/step - loss	: 0.9654	4 -	accuracy:	0.6647
Epoch 12/100							
1563/1563 [======]	-	43s	28ms/step - loss	: 0.9349	9 -	accuracy:	0.6783
Epoch 13/100 1563/1563 [=====]		120	20mg/stop loss	. 0 0045			0 6000
Epoch 14/100		455	20105/Step - 1055	. 0.904.	5 -	accuracy.	0.0000
1563/1563 [=====]	-	43s	28ms/step - loss	: 0.8809	9 -	accuracy:	0.6986
Epoch 15/100							
1563/1563 [=====]	-	43s	28ms/step - loss	: 0.8495	5 -	accuracy:	0.7096
Epoch 16/100							0. 7000
1563/1563 [======]	-	44s	28ms/step - loss	: 0.8235	5 -	accuracy:	0.7209
Epoch 17/100 1563/1563 [=====]	_	430	28ms/step - 1000	. 0 8074	6 -	accuracy	0 7244
Epoch 18/100	-	105	20m3/3cep - 1088	. 0.0076	~ -	accuracy:	
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.7935	5 -	accuracy:	0.7325
Epoch 19/100			*			*	
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.7762	2 -	accuracy:	0.7381
Epoch 20/100							
1563/1563 [======]	-	44s	28ms/step - loss	: 0.7591	1 -	accuracy:	0.7458
Epoch 21/100 1563/1563 [=====]		440	20mg/stop loss	. 0 7415			0 7503
Epoch 22/100	-	445	20105/Step - 1055	. 0.741.	- נ	accuracy.	0.7502
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.7253	3 -	accuracy:	0.7580
Epoch 23/100							
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.7176	б —	accuracy:	0.7641
Epoch 24/100							
1563/1563 [======]	-	44s	28ms/step - loss	: 0.7008	B -	accuracy:	0.7674
Epoch 25/100 1563/1563 [=====]	_	110	28me/stop - loss	. 0 6919	5 -	accuracy.	0 7706
Epoch 26/100		115	20m3/3cep 1033	. 0.051.	5	accuracy.	0.7700
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.6771	1 -	accuracy:	0.7773
Epoch 27/100							
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.6628	B —	accuracy:	0.7834
Epoch 28/100							
1563/1563 [======]	-	44s	28ms/step - loss	: 0.6594	4 -	accuracy:	0.7832
Epoch 29/100 1563/1563 [=====]	_	130	28me/stop - loss	. 0 6419	5 -	accuracy.	0 7920
Epoch 30/100		455	20113/3cep 1033	. 0.0413	5	accuracy.	0.7520
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.6367	7 -	accuracy:	0.7928
Epoch 31/100							
1563/1563 [=====]	-	44s	28ms/step - loss	: 0.6256	б —	accuracy:	0.7966
Epoch 32/100			28mg/ato- 1	. 0 (177	,		0 7001
1563/1563 [=====] Epoch 33/100	-	44S	zons/scep - ioss	. 0.61/	/ -	accuracy:	0./591
1563/1563 [=====]	_	438	28ms/step - loss	: 0.6069	9 -	accuracy.	0.8015
Epoch 34/100			,p 1033				
1563/1563 []	-	43s	28ms/step - loss	: 0.6019	9 -	accuracy:	0.8047
Epoch 35/100							
1563/1563 [=====]	-	43s	28ms/step - loss	: 0.5895	5 -	accuracy:	0.8105
Epoch 36/100				0 501/			0.0100
1563/1563 [=====] Epoch 37/100	-	43S	∠/ms/step - loss	: U.5819	9 -	accuracy:	0.0123
1563/1563 [=====]	_	438	27ms/step - loss	0.5758	8 -	accuracy.	0.8130
Epoch 38/100			,p 1033				
1563/1563 []	-	43s	27ms/step - loss	: 0.5690	- C	accuracy:	0.8167
Epoch 39/100							
1563/1563 [=====]	-	43s	27ms/step - loss	: 0.5584	4 -	accuracy:	0.8218
Epoch 40/100		42-	27mg (at ar 1)		1	200000	0 8242
1563/1563 [=====] Epoch 41/100	-	43S	zims/step - loss	. 0.5511	± -	accuracy:	0.0243
1563/1563 [=====]	_	438	27ms/step - loss	0.5488	8 -	accuracy.	0.8244
Epoch 42/100			,p 1033				
1563/1563 [=====]	-	43s	27ms/step - loss	: 0.5448	в –	accuracy:	0.8250
Epoch 43/100			-			-	
1563/1563 [======]	-	43s	27ms/step - loss	: 0.5385	5 -	accuracy:	0.8288
Epoch 44/100		4.2	27		-		0.0004
1563/1563 [======]	-	43s	∠/ms/step - loss	: 0.5316	0 -	accuracy:	0.0294
Epoch 45/100 1563/1563 [=====]]	_	430	27ms/step - loss	0.524	7 -	accuracy.	0.8320
Epoch 46/100			,p 1033				

1563/1563 [=================]		120	27ms/step		1000.	0 5177			0 0262
Epoch 47/100		455	z/ms/scep		1055.	0.5177		accuracy.	0.0303
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.5098	-	accuracy:	0.8400
Epoch 48/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.5073	_	accuracy:	0.8389
Epoch 49/100		150	2711070000		1000.	0.0070		accuracy.	0.0000
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.5002	-	accuracy:	0.8432
Epoch 50/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4958	_	accuracy:	0.8437
Epoch 51/100									
1563/1563 [=====] Epoch 52/100	-	43s	27ms/step	-	loss:	0.4911	-	accuracy:	0.8472
1563/1563 [======]	_	43s	27ms/step	_	loss:	0.4885	_	accuracy:	0.8469
Epoch 53/100									
1563/1563 [=====] Epoch 54/100	-	43s	2/ms/step	-	loss:	0.4814	-	accuracy:	0.8491
1563/1563 [======]	-	43s	27ms/step	-	loss:	0.4754	-	accuracy:	0.8515
Epoch 55/100		42-	27		1	0 4706			0 05 3 3
1563/1563 [=====] Epoch 56/100	-	435	z/ms/step	-	loss:	0.4726	-	accuracy:	0.8555
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.4667	-	accuracy:	0.8543
Epoch 57/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4622	_	accuracy:	0.8585
Epoch 58/100		155	2711070000		1000.	0.1022		accuracy.	0.0000
1563/1563 [======]	-	43s	27ms/step	-	loss:	0.4579	-	accuracy:	0.8576
Epoch 59/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4582	_	accuracy:	0.8573
Epoch 60/100									
1563/1563 [=====] Epoch 61/100	-	43S	∠/ms/step	-	LOSS:	0.4521	-	accuracy:	0.8603
1563/1563 [=====]	-	42s	27ms/step	-	loss:	0.4472	-	accuracy:	0.8610
Epoch 62/100 1563/1563 [======]		120	27mg/aton		1000.	0 4441			0 9621
Epoch 63/100		455	z/ms/scep		1055.	0.4441		accuracy.	0.0051
1563/1563 [======]	-	43s	27ms/step	-	loss:	0.4410	-	accuracy:	0.8638
Epoch 64/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4389	_	accuracy:	0.8651
Epoch 65/100									
1563/1563 [======]	-	42s	27ms/step	-	loss:	0.4364	-	accuracy:	0.8673
Epoch 66/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4315	_	accuracy:	0.8671
Epoch 67/100									
1563/1563 [=====] Epoch 68/100	-	43s	27ms/step	-	loss:	0.4293	-	accuracy:	0.8677
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.4242	-	accuracy:	0.8700
Epoch 69/100 1563/1563 [=====]		40-	27		1	0 4107			0 0722
Epoch 70/100	-	425	z/ms/step	-	loss:	0.410/	-	accuracy:	0.8733
1563/1563 [======]	-	43s	27ms/step	-	loss:	0.4166	-	accuracy:	0.8725
Epoch 71/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.4103	_	accuracy:	0.8754
Epoch 72/100									
1563/1563 [=====] Epoch 73/100	-	42s	27ms/step	-	loss:	0.4078	-	accuracy:	0.8766
1563/1563 [=================================]	_	42s	27ms/step	_	loss:	0.4074	_	accuracy:	0.8768
Epoch 74/100			07 ()						
1563/1563 [=====] Epoch 75/100	-	43s	2/ms/step	-	loss:	0.4024	-	accuracy:	0.8783
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.3995	-	accuracy:	0.8801
Epoch 76/100 1563/1563 [=====]	_	429	27ms/step	_	1055.	0 3937	_	accuracy.	0 8827
Epoch 77/100		120	2711070000		1000.	0.0007		accuracy.	0.002,
1563/1563 [======]	-	42s	27ms/step	-	loss:	0.3942	-	accuracy:	0.8805
Epoch 78/100 1563/1563 [=====]	_	43s	27ms/step	_	loss:	0.3892	_	accuracy:	0.8846
Epoch 79/100									
1563/1563 [=====] Epoch 80/100	-	42s	27ms/step	-	loss:	0.3878	-	accuracy:	0.8825
1563/1563 [=====]	-	42s	27ms/step	-	loss:	0.3851	-	accuracy:	0.8838
Epoch 81/100		40-	27mg/-+-		1055	0 2020			0 0041
1563/1563 [=====] Epoch 82/100	-	42S	∠/ms/step	-	LUSS:	0.3828	-	accuracy:	0.0841
1563/1563 [=====]	-	42s	27ms/step	-	loss:	0.3798	-	accuracy:	0.8863
Epoch 83/100	_	430	27ms/step	_	1055.	0 3781	_	accuracy.	0 8871
Epoch 84/100		455	2/113/3cep		1035.	0.5701		accuracy.	0.00/1
1563/1563 [=====]	-	42s	27ms/step	-	loss:	0.3761	-	accuracy:	0.8868
Epoch 85/100 1563/1563 [=====]	_	42s	27ms/step	_	loss:	0.3669	_	accuracy:	0.8894
Epoch 86/100									
1563/1563 [=====] Epoch 87/100	-	43s	27ms/step	-	loss:	0.3693	-	accuracy:	0.8895
1563/1563 [=====]	-	42s	27ms/step	-	loss:	0.3637	-	accuracy:	0.8911
Epoch 88/100		42-	27mg/-+-		1055	0 2020			0 0010
1563/1563 [=====] Epoch 89/100	-	43S	∠/ms/step	-	LUSS:	0.3634	-	accuracy:	0.0912
1563/1563 [=====]	-	43s	27ms/step	-	loss:	0.3607	-	accuracy:	0.8918
Epoch 90/100 1563/1563 [======]	_	430	27ms/ster	_	1055.	0.3568	_	accuracy.	0.8942
Epoch 91/100			-					-	
1563/1563 [=====] Epoch 92/100	-	42s	27ms/step	-	loss:	0.3510	-	accuracy:	0.8974
II apoen 32/100									

1563/1563 [
Epoch 93/100
1563/1563 [====================================
Epoch 94/100
1563/1563 [====================================
Epoch 95/100
1563/1563 [====================================
Epoch 96/100
1563/1563 [====================================
Epoch 97/100
1563/1563 [====================================
Epoch 98/100
1563/1563 [====================================
Epoch 99/100
1563/1563 [====================================
Epoch 100/100
1563/1563 [====================================
Evaluating on test dataset
313/313 [===================================
[0.23870298266410828, 0.9341999888420105]

6.2 CIFAR-100

	1563/1563 [=======================] - 42s 27ms/step - loss: 4.0681 - top_k_categorical_accuracy: 0.2525 Epoch 2/100
	Joon 2/100 J563/1563 [====================================
	Epoch 3/100
	1563/1563 [====================================
	Spoch 4/100
	1563/1563 [====================================
	2poch 5/100 1563/1563 [====================================
	poch 6/100
	1563/1563 [====================================
	Epoch 7/100
	1563/1563 [====================================
	2poch 8/100 1563/1563 [====================================
	poch 9/100
11	1563/1563 [====================================
	Spoch 10/100
	1563/1563 [====================================
	17/100 [
	Spoch 12/100
	1563/1563 [====================================
	Spoch 13/100
	1563/1563 [=======================] - 43s 28ms/step - loss: 2.3379 - top_k_categorical_accuracy: 0.7119 Epoch 14/100
	19/10/ 1563/1563 [====================================
	Epoch 15/100
	1563/1563 [====================================
	1563/1563 [=======================] - 43s 28ms/step - loss: 2.1943 - top_k_categorical_accuracy: 0.7417 2poch 17/100
11	1563/1563 [====================================
	Epoch 18/100
	1563/1563 [====================================
	Spoch 20/100
	1563/1563 [====================================
	1563/1563 [=======================] - 43s 27ms/step - loss: 1.9891 - top_k_categorical_accuracy: 0.7846 Epoch 22/100
	1563/1563 [====================================
	Epoch 23/100
	1563/1563 [====================================
	Spoch 24/100 1563/1563 [============================] - 43s 28ms/step - loss: 1.8968 - top_k_categorical_accuracy: 0.8026
Н	Soch 25/100 Cop_k_categoricat_accutacy. 0.0010
11	1563/1563 [====================================
	Epoch 26/100
	1563/1563 [=======================] - 43s 28ms/step - loss: 1.8459 - top_k_categorical_accuracy: 0.8112 Epoch 27/100
	[563/1563 [====================================
	Spoch 28/100
	1563/1563 [====================================
	ipoch 29/100 1562/1562 [
	1563/1563 [====================================
	1563/1563 [====================================
	Epoch 31/100
	[563/1563 [====================================
П	2poch 32/100

1563/1563 [======]	-	43s	27ms/step -	loss:	1.7136	 top_k_categorical_accuracy: 	0.8319
Epoch 33/100 1563/1563 []	_	439	27ms/sten -	1055.	1 6925	- top k categorical accuracy.	0 8377
Epoch 34/100		150	271070000	1000.	1.0525	cop_n_curegorrear_accuracy.	0.00//
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.6768	- top_k_categorical_accuracy:	0.8409
Epoch 35/100 1563/1563 [=====]		120	29mg/aton	1000	1 6560	top k astogoriasl seguracy.	0 0420
Epoch 36/100	-	435	zoms/scep -	1055.	1.0300	- cop_k_categorical_accuracy.	0.0455
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.6362	- top_k_categorical_accuracy:	0.8465
Epoch 37/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.6228	 top_k_categorical_accuracy: 	0.8509
Epoch 38/100 1563/1563 [=====]	-	43s	27ms/step -	loss	1.6114	- top k categorical accuracy:	0.8527
Epoch 39/100							
1563/1563 [=====]	-	43s	27ms/step -	loss:	1.5943	- top_k_categorical_accuracy:	0.8555
Epoch 40/100		42-	27	1	1 5701		0.0500
1563/1563 [=====] Epoch 41/100	-	435	z/ms/scep -	1055.	1.3/31	- cop_k_categorical_accuracy.	0.0000
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.5627	- top_k_categorical_accuracy:	0.8592
Epoch 42/100							
1563/1563 [=====] Epoch 43/100	-	43s	27ms/step -	loss:	1.5467	 top_k_categorical_accuracy: 	0.8631
1563/1563 [======]	_	43s	27ms/step -	loss:	1.5284	- top k categorical accuracy:	0.8651
Epoch 44/100			-				
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.5174	 top_k_categorical_accuracy: 	0.8640
Epoch 45/100 1563/1563 [=====]	-	43s	27ms/step -	loss	1.4951	- top k categorical accuracy:	0.8711
Epoch 46/100							
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.4918	- top_k_categorical_accuracy:	0.8701
Epoch 47/100	_	430	28ms/etan	1000	1 4754	- top k categorical accuracy.	0 8723
1563/1563 [=====] Epoch 48/100	_	435	zoms/step -	TOSS:	1.4/54	cop_x_caregorical_accuracy:	0.0723
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.4596	- top_k_categorical_accuracy:	0.8756
Epoch 49/100							
1563/1563 [=====] Epoch 50/100	-	43s	28ms/step -	loss:	1.4506	 top_k_categorical_accuracy: 	0.8773
1563/1563 [======]	-	43s	28ms/step -	loss:	1.4426	- top_k_categorical_accuracy:	0.8788
Epoch 51/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.4234	 top_k_categorical_accuracy: 	0.8806
Epoch 52/100 1563/1563 [=====]	-	43s	27ms/step -	loss	1.4232	- top k categorical accuracy:	0.8805
Epoch 53/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.4075	 top_k_categorical_accuracy: 	0.8847
Epoch 54/100 1563/1563 [=====]	-	43s	28ms/step -	loss	1.4013	- top k categorical accuracy:	0.8854
Epoch 55/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.3845	 top_k_categorical_accuracy: 	0.8884
Epoch 56/100 1563/1563 [=====]	-	43s	27ms/step -	loss	1.3836	- top k categorical accuracy:	0.8878
Epoch 57/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.3690	 top_k_categorical_accuracy: 	0.8905
Epoch 58/100 1563/1563 [=====]	_	439	27ms/sten -	1055.	1 3541	- top k categorical accuracy.	0 8906
Epoch 59/100							
1563/1563 [======]	-	43s	28ms/step -	loss:	1.3458	 top_k_categorical_accuracy: 	0.8937
Epoch 60/100 1563/1563 [=====]	_	130	28ms/stop -	1000	1 3/25	- top k categorical accuracy.	0 8939
Epoch 61/100		150	Long, occp	1000.	1.0120	cop_n_curegorrear_accuracy.	0.0000
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.3249	- top_k_categorical_accuracy:	0.8953
Epoch 62/100 1563/1563 []	_	439	28ms/sten -	1055.	1 3209	- top k categorical accuracy:	0 8963
Epoch 63/100			, ocep	1000.			
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.3073	- top_k_categorical_accuracy:	0.8980
Epoch 64/100 1563/1563 [======]		12-	28mg/atan	1000	1 2050	- top k categorical accurate	0 9012
Epoch 65/100	_	435	zoms/step -	TOSS:	1.2930	cop_x_caregorical_accuracy:	0.5012
1563/1563 [=====]	-	43s	27ms/step -	loss:	1.2907	- top_k_categorical_accuracy:	0.9019
Epoch 66/100							
1563/1563 [=====] Epoch 67/100	-	43s	28ms/step -	loss:	1.2829	 top_k_categorical_accuracy: 	0.9024
1563/1563 [======]	_	43s	27ms/step -	loss:	1.2730	- top k categorical accuracy:	0.9028
Epoch 68/100			-				
1563/1563 [=====]	-	43s	27ms/step -	loss:	1.2616	 top_k_categorical_accuracy: 	0.9049
Epoch 69/100 1563/1563 [=====]	-	43s	28ms/step -	loss	1.2598	- top k categorical accuracy:	0.9054
Epoch 70/100		150	Long, occp	1000.	1.2000	cop_n_curegorrear_accuracy.	0.9091
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.2408	 top_k_categorical_accuracy: 	0.9087
Epoch 71/100 1563/1563 [=====]	_	130	27ms/stop -	1000	1 2406	- top k categorical accuracy.	0 9088
Epoch 72/100	-	-15	zimaistep -	1022:	1.2400	cop_x_categorical_accuracy:	5.5000
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.2295	- top_k_categorical_accuracy:	0.9095
Epoch 73/100		12-	27me/atan	1000	1 2252	- top k asteropical accurate	0 9100
1563/1563 [======] Epoch 74/100	_	435	z/ms/step -	TOSS:	1.4404	cop_x_caregorical_accuracy:	0.9109
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.2168	- top_k_categorical_accuracy:	0.9125
Epoch 75/100							
1563/1563 [======] Epoch 76/100	-	43s	27ms/step -	loss:	1.2135	 top_k_categorical_accuracy: 	0.9114
1563/1563 [======]	-	43s	27ms/step -	loss:	1.1976	- top_k_categorical_accuracv:	0.9138
Epoch 77/100			-				
1563/1563 [=====]	-	43s	28ms/step -	loss:	1.1951	 top_k_categorical_accuracy: 	0.9131
Epoch 78/100							

1563/1563 [====================================	
Epoch 79/100	
1563/1563 [====================================	
Epoch 80/100	
1563/1563 [====================================	
Epoch 81/100	
1563/1563 [====================================	
Epoch 82/100	
1563/1563 [====================================	
Epoch 83/100	
1563/1563 [========================] - 43s 28ms/step - loss: 1.1433 - top_k_categorical_accuracy: 0.9211	
Epoch 84/100	
1563/1563 [====================================	
1563/1563 [====================================	
Epoch 86/100	
1563/1563 [====================================	
Epoch 87/100	
1563/15/15/3 [====================================	
Epoch 88/100	
1563/1563 [====================================	
Epoch 89/100	
1563/1563 [====================================	
Epoch 90/100	
1563/1563 [====================================	
Epoch 91/100	
1563/1563 [====================================	
Epoch 92/100	
1563/1563 [====================================	
Epoch 93/100	
1563/1563 [=============================] - 43s 27ms/step - loss: 1.0958 - top_k_categorical_accuracy: 0.9259	
Epoch 94/100	
1563/1563 [====================================	
Epoch 95/100	
1563/1563 [====================================	
Epoch 96/100 1563/1563 [====================================	
Epoch 97/100 1563/1563 [====================================	
1565/1565 [===================================	
1563/1563 [====================================	
Epoch 99/100	
1563/1563 [====================================	
Epoch 100/100	
1563/1563 [====================================	
Evaluating on test dataset	
313/313 [===================================	
[1.5469876527786255, 0.8840000033378601]	

References

- [1] https://www.cs.toronto.edu/~kriz/cifar.html
- [2] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [3] He, Kaiming, et al. "Identity mappings in deep residual networks." *European conference on computer vision*. Springer, Cham, 2016.
- [4] Recombination of Artificial Neural Networks Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/ResNet-neural-network-architecture-ResNet-34-pictured-image-from-11_fig6_330400293 [accessed 1 Oct, 2020]
- [5] https://benchmarks.ai/cifar-10