
ECE472 – Project 2

Jonathan Lam

September 16, 2020

Notes on model development
Initialization Like in the last project, initialization was done with Gaussians. The only problems I

had were that if I initialized the ReLUs with zero-centered bias matrices, then the convergence
appeared to be slower (most likely due to many “dead” ReLUs), so I initialized them with
a largely-positive bias (layers[i]['bias']). I also realized that as the number of layers
increased, I had to downscale the initial weights for the activation functions so that there
weren’t convergence issues (layers[i]['coef']).

Layer widths At first, I had relatively low layer widths. Following the example of the textbook,
which used a two-layer perceptron to model XOR, where the hidden layer had a width of 2,
I tried widths of 2, 4, and 8. This didn’t classify all of the points correctly (it seemed to
converge, but not near zero), so at this point I added another layer, which only helped a little
bit. Only when I had five layers (four with width 10, the last one with width 1) was I able to
make the model converge.

After speaking with some classmates (Derek Lee), I learnt that even this was considered a
low number, and I experimented with larger sizes, which in general tended to converge faster.
The final values I chose (32, 64, 32, 1) are somewhat arbitrary but seem to converge quickly
(< 1000 iterations with Adam). Using smaller values (e.g., 16, 16, 16, 1) I can still classify all
of the points correctly, but occasionally there are classification errors with only 1000 iterations
and would benefit with more iterations, and the boundary is not as smooth.

Layer count Initially, I began with three ReLU layers and one sigmoid layer (this is the same as
my final). I only tried up to five layers (adding one additional ReLU), which helped a little
when the widths of the layers were small.

Update rule, iteration count, and dynamic step sizes Most of my experimentation worked
with a basic gradient descent algorithm with a step size that was manually attenuated with
higher iterations, e.g., α ← α/2 every 1000 iterations. This eventually converged (most of
the time) without problems, but there were generally many irregular spikes on the loss vs.
iterations plot. Typical convergence took 5000-10000 iterations using this scheme.

After reading the paper on Adam, I wanted to see how it would affect my model. I wasn’t
expecting much, but this did wonders right away on the convergence (both the smoothness
and convergence rate): the same model only required 500-1000 iterations to converge. The
loss vs. iteration count plot immediately became smooth.

1

The end result is a four-layer perceptron using batch gradient descent with the Adam update rule,
with three ReLU layers with widths 32, 64, and 32, followed by a sigmoid layer to map onto the
probability space. The loss function is a binary cross-entropy function with L2 penalties for the
weight matrices Wi (but not the bias matrices bi). 1000 iterations are sufficient to train this model,
which runs in approximately 6s on an i7-7500U processor with integrated graphics.

Source code

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

DEFINE MODEL

activation function definitions
def relu(X, W, b):

return tf.nn.relu(tf.transpose(W) @ X + b)

def sigmoid(X, W, b):
return tf.math.sigmoid(tf.transpose(W) @ X + b)

multi-layer perceptron classifier model definition
class MultiLayerPerceptronClassifier:

def __init__(self,
sampleDim, # dimensionality of input
layers, # layer definitions
lmbda=0.01, # l2 penalty coefficient
beta1=0.9, # decay factor for first moment (adam)
beta2=0.999, # decay factor for second moment (adam)
alpha=0.001): # upper bound on learning rate (adam)

self._lmbda = lmbda
self._beta1 = beta1
self._beta2 = beta2
self._alpha = alpha
self._layers = layers

model variables to optimize; initialize with normal distribution
self._modelVars = [

{
'W': tf.Variable(tf.random.normal(

(layers[i-1]['width'] if i > 0 else sampleDim,
layer['width']), dtype=tf.float64) * layer['coef']),

'b': tf.Variable(tf.random.normal((layer['width'], 1),
dtype=tf.float64) * layer['coef'] + layer['bias'])

} for i, layer in enumerate(layers)
]

adam variables: weighted first and second moments of gradients
self._adamVars = [

{
'zW': tf.zeros_like(layerVars['W']),
'zb': tf.zeros_like(layerVars['b']),

2

'zW2': tf.zeros_like(layerVars['W']),
'zb2': tf.zeros_like(layerVars['b']),

} for layerVars in self._modelVars
]

def f(self, X):
for layer, layerVars in zip(self._layers, self._modelVars):

X = layer['actFn'](X, layerVars['W'], layerVars['b'])
return X

binary cross-entropy loss with L2 penalty
def bceLossL2Penalty(self, y, yhat):

loss = -y * tf.math.log(yhat) - (1 - y) * tf.math.log(1 - yhat)
for layerVars in self._modelVars:

loss += self._lmbda * tf.nn.l2_loss(layerVars['W'])
return loss

def step(self, X, y):
don't do random batches, just use entire input on every step
with tf.GradientTape() as tape:

loss = self.bceLossL2Penalty(y, self.f(X))

calculate gradient, store loss
grad = tape.gradient(loss, self._modelVars)
self._losses.append(tf.math.reduce_mean(loss))

update model and adam variables
for adam, layerVars, layerGrad \

in zip(self._adamVars, self._modelVars, grad):

update adam moments
adam['zW'] = self._beta1 * adam['zW'] \

+ (1 - self._beta1) * layerGrad['W']
adam['zb'] = self._beta1 * adam['zb'] \

+ (1 - self._beta1) * layerGrad['b']
adam['zW2'] = self._beta2 * adam['zW2'] \

+ (1 - self._beta2) * layerGrad['W']**2
adam['zb2'] = self._beta2 * adam['zb2'] \

+ (1 - self._beta2) * layerGrad['b']**2

adam update rule
ep = 0.0001 # epsilon to prevent division by zero
layerVars['W'].assign_sub(self._alpha * adam['zW'] \

/ (tf.math.sqrt(adam['zW2']) + ep))
layerVars['b'].assign_sub(self._alpha * adam['zb'] \

/ (tf.math.sqrt(adam['zb2']) + ep))

def train(self, X, y, iterations):
self._losses = []
for i in range(iterations):

self.step(X, y)
return self._losses

GENERATE SAMPLE DATA

spiral definition
offset = 2 # offset of spirals from center (radially)

3

N = 200 # sample count
noiseStd = 0.25 # sample noise (radially)
spiralEnd = 3.5 * np.pi # spiral end (radians)

generate spirals
t = tf.random.uniform((N,), 0., spiralEnd, dtype=tf.float64)
noise = tf.random.normal((2*N,), 0, noiseStd, dtype=tf.float64)
x1 = (t + noise[:N] + offset) * tf.math.cos(-t)
y1 = (t + noise[:N] + offset) * tf.math.sin(-t)
x2 = (t + noise[N:] + offset) * tf.math.cos(-t + np.pi)
y2 = (t + noise[N:] + offset) * tf.math.sin(-t + np.pi)

samples of zeroes and ones; sample matrices include both inputs and labels
S0 = tf.concat((x1[tf.newaxis], y1[tf.newaxis],

tf.zeros((1, N), dtype=tf.float64)), axis=0)
S1 = tf.concat((x2[tf.newaxis], y2[tf.newaxis],

tf.ones((1, N), dtype=tf.float64)), axis=0)
S = tf.concat((S0, S1), axis=1)

samples predictor matrices, label matrices
X = S[0:2, :]
y = S[2, :][tf.newaxis]

CREATE AND RUN MODEL

configure layers, widths, functions; width is the number of outputs for a fn,
number of inputs inferred from last layer's width (or sample's dimensions)
layers = [

{'actFn': relu, 'width': 32, 'coef': 0.25, 'bias': 0.5},
{'actFn': relu, 'width': 64, 'coef': 0.25, 'bias': 0.5},
{'actFn': relu, 'width': 32, 'coef': 0.25, 'bias': 0.5},
{'actFn': sigmoid, 'width': 1, 'coef': 0.25, 'bias': 0.},

]
classifier = MultiLayerPerceptronClassifier(2, layers)
losses = classifier.train(X, y, 1000)

PLOT RESULTS

plot spirals
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 7))

res = classifier.f(X)[0]
x1 = X[0][res<0.5]
y1 = X[1][res<0.5]
x2 = X[0][res>=0.5]
y2 = X[1][res>=0.5]

plot original sample points
ax1.plot(x1, y1, 'x', x2, y2, 'x')

plot manifold
x1, x2 = np.meshgrid(np.linspace(-15, 15, 100), np.linspace(-15, 15, 100))
yhat = np.reshape(classifier.f(np.vstack((x1.flatten(), x2.flatten()))),

(100, 100))
ax1.contourf(x1, x2, yhat, 1, vmin=0, vmax=1)
ax1.set_ylim([-16, 16])

4

ax1.set_xlim([-16, 16])
ax1.set_ylabel('x_2')
ax1.set_xlabel('x_1')
ax1.set_title('Resultant manifold and classification of sample points')

plot losses vs. iteration count
ax2.plot(losses)
ax2.set_ylabel('BCE Loss w/ L2 Penalty')
ax2.set_xlabel('Iteration count')
ax2.set_title('Loss vs. iteration count')
plt.show()

Plots

−15 −10 −5 0 5 10 15
x1

−15

−10

−5

0

5

10

15

x 2

Resultant manifold and classification of sample points

0 200 400 600 800 1000
Iteration count

0.5

1.0

1.5

2.0

2.5

3.0

3.5

BC
E
Lo
ss
 w
/ L
2
Pe
na
lty

Loss vs. iteration count

The blue crosses are randomly generated samples from one class, and the orange crosses are ran-
domly generated samples from the other class. The dark blue and green regions are where the
model predicts that points will fall into those respective classes. All of the points are correctly
classified. The model does not look too overfitted, and there is a reasonable margin between the
two sample sets. The loss vs. iteration count is smooth and monotonically decreasing, which shows
a nice convergence.

5

