ECE469 — Pset 3

Jonathan Lam

December 14, 2020

1. Consider the famous sentence, “The quick brown fox jumps over the lazy
dog.” Draw a reasonable parse tree for the sentence (assuming the ex-
istence of reasonable grammar rules). The root of the tree should be S,
representing a sentence, and the leaves should be the words of the sentence.
Also express the CFG rules, including the lexical rules, that are implied by
the tree.

The sentence can be represented with the following parse tree:

[s
[NP
[Article Thel
[Adjs
[Adjective quick]
[Adjs [Adjective brown]]]
[Noun fox]]
[VP
[VP [Verb jumps]]
[PP
[Prep over]
[NP
[Article the]
[Adjs [Adjective lazy]]
[Noun dogl]11]

(NB: this parse tree is valid Lisp (Chez Scheme) syntax (except perhaps
that the word literals should be quoted)! Shows how well Lisp works with
grammars.)

This uses the CFG given in the class example, with a different lexicon.
The subset of the rules used in this example is summarized in the table
below.

S NP VP | ...

NP — Article Adjs Noun | ...
VP — Verb | VP PP | ...

Adjs — Adjective | Adjective Adjs
PP — Prep NP

Article — the | ...

Noun — fox | dog | ...

Adjective — quick | brown | lazy | ...
Verb — jumps | ...

Prep — over | ...

2. Naive Bayes systems work well for some text categorization tasks, even
though the “naive” assumption is clearly false. Explain what it means for
the assumption to be false for this task, and give a specific example that
demonstrates it is false.

The naive Bayes formulation for text categorization is as follows:
N
P(C|’LU1:N) = aP(C) H P(’UJZ|C)
i=1

The naive assumption is that each word is conditionally independent of
all of the other words given the category; this is false if two words are
often seen together. E.g., the words “Volkswagon” and “beetle” should not
be conditionally independent of the category “vehicle” P(beetle|vehicle) is
probably much lower than P(beetle|vehicle, Volkswagon), which will make
the product of probabilities lower than it should be.

3. Consider a conventional, feedforward neural network applied to the task of
text categorization, and one sentence is being classified at a time. Assume
it has been trained on a corpus with D labeled sentences, and the total
size of the vocabulary is V. It is now being used to classify a document
with T total tokens and U unique, or distinct, tokens. If a conventional
feedforward neural network is being used for the task, what would typically
be the number of input nodes? What would be represented by each input
node?

Without word embeddings, there would likely be V input nodes, where
each input node represents the presence or frequency of a single word in
the vocabulary. (D is irrelevant because one sentence is being classified
at a time, and limiting the number of input nodes to T" and U would not
allow the network to use the whole vocabulary.)

4. Now consider text categorization involving d-dimensional word embeddings
and a recurrent neural network (either a simple RNN, or a variation such
as an LSTM). We have learned that it shouldn’t be necessary to pad sen-
tences to ensure they have equal length. When using other types of deep
neural networks with word embeddings (such as a feedforward neural net-
works or a CNN), it typically is necessary to pad the input sentence. Why
isn’t it generally necessary to pad sentences when using an RNN for text
categorization?

A FF NN makes its inference based only on its inputs (it has no sense
of persistent state or context), so it requires sentence context from the
surrounding words (the rest of a sentence); since they usually have a fixed
number of inputs, they require a padded input. A RNN does have an
internal state that persists over a series of inputs, so it can handle dynamic-
length sentences, and only requires one input at a time.

5. Now consider a hidden Markov model being used for part-of-speech (POS)
tagging. If the tagger is trained using a treebank (a corpus containing
labeled examples of POS), what parameters need to be learned?

In a HMM using POS tagging, the current (hidden) state represents the
part of speech. Thus, we need to learn two parameters: the transitions
(“transition probabilities”) between different states (the next likely part of
speech), as well as the most likely word given the current POS (“emission
probability”).

6. Now consider a simple RNN being used as a POS tagger (in practice, a
variation such as an LSTM would more likely be used). If the tagger is
trained using a treebank, what parameters need to be learned?

The RNN'’s internal state is a function of the current input word’s em-
bedding and the previous state. It has to learn the function (weights)
to transform the current state to the next state (similar to the transition
probability), as well as the function (weights) to estimate the POS given
the current state (similar to the emission probability).

