
ECE469 – Project 2

Jonathan Lam

December 2, 2020

1 Problem description

1. Implement a fully-connected (FC) neural network architecture containing
one hidden layer (with an arbitrary number of inputs, hidden nodes, and
output nodes) for multiclass binary classification, where each node uses a
sigmoid activation. Each output should be a binary classification using a
mean squared-error (MSE) loss.

2. Allow the user to input the initial weights for the network, input a training
dataset, and train a neural network initialized with those weights on the
given dataset for a given number of epochs and a given learning rate.
Allow the user to output the trained network weights to a file.

3. Allow the user to evaluate the dataset on a test dataset, and output the
results (statistics) to a file.

4. Create a custom dataset and run steps 2. and 3. on it. I.e., find or
create a binary multiclass classification dataset, generate the train and
test dataset files for this dataset, decide on a network architecture (i.e.,
number of hidden nodes), generate the weights to initiate this architecture,
train and evaluate the model, and output the statistics of the model on
the test dataset.

1



2 File formats

These are delineated in the assignment file, but included here for completeness.
For sake of reproducibility, all weights and feature values should be rounded to
three decimal places (zero-padded if necessary), all other numbers (numbers of
features, numbers of nodes, binary labels, etc.) should be integral values, all
lines should not contain leading or trailing spaces, all values on a line should be
delimited by a single space, and newlines should follow the Unix format. There
are example files in the GitHub repository.

2.1 Train and test datasets

The first line should contain the following three values:

1. Number of samples

2. Feature count

3. Output count

The rest of the file will include sample information, with one sample per line.
Each line should contain a list of all the features followed by a list of all the
output labels (0 or 1), all delimited by spaces.

2.2 Network weights

This file assumes a fully-connected architecture. The first line should be a list of
the widths (number of nodes) of each layer, including the “input layer” (whose
width is the number of features). Thus, in a neural network with one hidden
layer, this would be the number of input features, the number of hidden nodes,
and the number of output nodes.

The rest of the file are the weights of the network. Each line contains the
weights of one node, and the number of weights on each node’s line should be
one more than the number of inputs to that node’s layer (the extra weight is the
bias node). The first weight should be the node’s threshold weight (which gets
multiplied by -1, i.e., the negative bias), and the rest of the weights should be
ordered corresponding to the order of the inputs. The nodes should be grouped
together by layer, and the layers should be ordered with the more shallow layer
(i.e., closer to the input layer) on top of the deeper layer.

2.3 Evaluation statistics

Expected = 1 Expected = 0
Predicted = 1 A B
Predicted = 0 C D

Table 1: Contingency table

2



Each line except for the last two lines are the statistics for a single binary class,
with the classes ordered in the same way as they are in the dataset and weights
files. Each line contains:

1. A (from contingency table)

2. B (from contingency table)

3. C (from contingency table)

4. D (from contingency table)

5. overall accuracy: A+D
A+B+C+D

6. precision: A
A+B

7. recall: A
A+C

8. F1 metric: 2∗Precision∗Recall
Precision+Recall

The final two lines contain the micro- and macro-averaged overall accuracy,
precision, recall, and F1 metrics, respectively.

3



3 Description of implementation

3.1 Tech stack and performance considerations

The language of choice is Scheme, because Lisp is fun. Chez Scheme is chosen
for the implementation. Performance was clearly not the goal here – everything
is built using linked lists and intended to be as much declarative-style as possible
(all elements are immutable, records are rebuilt on updates), there is no batch
training, SGD is not utilized, sigmoid is used rather than ReLU, nothing is
vectorized nor parallelized. This is fine for the toy datasets in use here and
for understanding neural network architectures, and it also makes for a fun
exercise in applying a lot of list transformations on a 3-D “tensor” (e.g., using
(apply map list M) can be thought of as transposing a matrix M).

(Using Chez Scheme’s --optimize-level 3 flag decreases runtime by about
10% by skipping runtime checks, for a tiny performance gain.)

3.2 Data structures

There are two major data structures: layer and model. These are defined as
record-types (i.e., like C’s struct).

Each layer has three fields: train, infer, and weights. train and infer

are procedures to train the network and to use the trained layer with its current
weights (if any), respectively. weights stores the layer’s weights, if any. For this
project, three different layer types are defined: sigmoid-layer, dense-layer,
and loss-layer. Only the dense-layer has weights associated with it; the
other two layers are essentially hardcoded functions (the sigmoid function and
the MSE loss) that pass along gradients during backpropagation.

Each model has two fields: layers and shape. layers is a list of layers,
in which the final layer is always a loss-layer. shape is a list of the widths
of each layer, including the “input layer” – i.e., if the first line of the network
weights file were “30 20 10” then shape would be (30 20 10). Note that this
generalizes past networks with a single hidden layer; an arbitrary number of
layers (with arbitrary layer types) can be supported.

(Also note that there is no “input layer,” which is only a useful abstraction
for describing the architecture shape and redundant once we have already built
the network.)

3.3 Training procedure

The training and backpropagation are handled recursively. Each layer’s train

method should take as arguments the layer inputs (equal to the features for the
first layer), the label for the current sample (only to be used in the loss layer),
the learning rate (for updating weights), and the following layers. For all of the
layers except the final layer (loss-layer) the following steps are performed:

1. (Forward pass) Call the infer method on this layer’s inputs to get this
layer’s outputs.

4



2. Recursively call the next layer’s train method using this layer’s outputs
as the next layer’s inputs, and passing along the rest of the arguments.
This will return the gradients of this layer’s nodes, as well as the updated
deeper layers.

3. (Backpropagation) Using the gradients of this layer’s nodes (w.r.t. the
loss) and this layer’s weights, calculate the gradients of each of the input
nodes w.r.t. the loss using chain rule.

4. (Backpropagation) Using the gradients of this layer’s nodes (w.r.t. the
loss) and the inputs to this layer, update the weights for this layer using
the derivative of each weight w.r.t. this node and the chain rule in order
to minimize the loss. (To practice immutability, a new layer is created
with the new weights and prepended to the list of updated deeper layers.)

5. (Backpropagation) Return the gradients of the input layer’s nodes and the
updated network (this layer and all deeper layers).

The procedure for the final layer is a different. Using the estimated outputs
and true output labels, simply computes the loss and the gradient of the loss
w.r.t. the outputs of the network. (This can be thought of as the base case of
the recursive procedure.)

To train a model on an example, all you need to do is call the train procedure
of the first layer, which will initiate the recursive training of the entire network.
This will return a network with all of the weights updated. The model-train

procedure performs this on every sample of the training dataset, reporting the
loss, and repeats this for the number of epochs.

3.4 Inference procedure

Evaluation of a model simply involves a folding operation over the infer meth-
ods of the layers of the model, where the initial value are the sample features.
This is implemented with the model-predict procedure.

Variants are written to map this procedure over a set (i.e., a test dataset
rather than a single test sample) (model-predict-set), and binary variants are
written to output the rounded model estimates for single and sets of samples
(binary-model-predict, binary-model-predict-set).

3.5 Evaluation procedure

Evaluation of a trained model occurs by performing inference on a test dataset
and calculating the statistics as described in §2.3. The model-evaluate proce-
dure takes as input a trained model, test feature set, and test labels, and returns
a list of:

1. per-class contingency tables (i.e., A, B, C, D)

2. per-class statistics (i.e., overall accuracy, precision, recall, F1 metric)

5



3. micro-averaged statistics

4. macro-averaged statistics

3.6 File structure

data/ Sample data files

data/gen_spam_ds.js The file used to preprocess/generate the files for the
spam dataset

stats/ Sample statistics files; filenames are in the form dataset_lr_epochs.stats

weights/ Sample weights files; filenames are in the form dataset_lr_epochs.init

or dataset_lr_epochs.trained

arch-defs.ss Neural network record type definitions

autorun.ss Script to easily initiate the training and test procedures (see §4.1)

dense-layer.ss Dense layer implementation

loss-layer.ss Loss layer implementation

main.ss Main starting point; imports dependencies and defines prompted train/test
procedures

model-io.ss Defines utilities for loading/exporting model weights/datasets/stats

model.ss Defines model train, test (predict), and evaluation procedures

sigmoid-layer.ss Sigmoid layer implementation

3.7 Source code

The source code, datasets, weight files, and statistics files are located on GitHub
at @jlam55555/nn-scheme.

3.8 Note on floating-point precision

Once when running on a peer’s dataset that there was a difference of 0.001 in
one number of the macro-averaged statistics, when all other outputs (statistics
and trained weights) matched exactly for all other datasets, including both the
provided datasets and both of our custom datasets.

Chez Scheme uses arbitrary-precision floating-point by default (analogous to
Java’s BigDecimal), which differs from the more standard IEEE 32-bit or 64-bit
floating point. I believe this may be due to the rounding difference rather than
some algorithmic error.

6

https://github.com/jlam55555/nn-scheme


4 Instructions

Make sure Chez Scheme is installed. The following are tested with Chez Scheme
9.5 on Debian 10 (kernel 4.19.0).

4.1 Without entering the REPL

$ scheme --script autorun.ss

For sake of example, this is what I used to train and time the spam example
(--optimize-level 3 reduces execution time by roughly 10%):

$ time scheme --optimize-level 3 --script autorun.ss 1>/dev/null <<EOF

weights/spam.init

data/spam.train

0.1

25

weights/spam_0.1_25.trained

data/spam.test

stats/spam_0.1_25.stats

EOF

4.2 Using the REPL

$ scheme --optimize-level 3

> (load "main.ss")

> (prompt-train-test-model)

These two commands run the same commands as autorun.ss. The procedure
prompt-train-test-model is a convenience function to facilitate the training
and testing of a FC model from start-to-finish (as described for this assignment),
prompting the user for the relevant model parameters and input/output files.
This method calls the procedures prompt-train-model and prompt-test-model,
also defined in main.ss, which can also be used separately. It should be easy
to see from the source code that this calls the underlying model loading, train-
ing, testing, and exporting procedures described in more detail in the previous
section.

7



5 Custom dataset

The dataset I chose was the Spambase UCI dataset1. This attempts to classify
emails as spam or not spam based on a number of custom features. The dataset
comes from a set of work emails.

The dataset comprises 4601 samples. There are 57 continuous inputs (email
features), and one boolean output (whether the email is classified as spam). A
more in-depth description of the features can be found at the UCI website.

• Features 1-48 indicate the percentage frequencies of 48 common words
found in spam emails.

• Features 49-54 indicate the percentage frequencies of 6 common character
sequences (mostly emoticons) that are commonly found in spam emails.

• Feature 55 indicates the average length of capital letter runs (consecutive
capital letters).

• Feature 56 indicates the maximum length of capital letter runs.

• Feature 57 indicates the sum of the lengths of capital letter runs.

The dataset files (data/spam.train, data/spam.test, and weights/spam.init)
are generated using the script data/gen_spam_ds.js. The number of outputs
(arbitrarily chosen to be 64 for this problem) and hidden nodes (1 output in
this case) must be explicitly specified. The preprocessing steps are:

1. Download the dataset file from the UCI repository.

2. Read in the data as a 2-D matrix, where each row is one sample.

3. Shuffle the dataset (Fisher-Yates).

4. Separate features from labels.

5. Scale each feature to the range [0, 1] (min-max scaling).

6. Create an 80/20 train/test split.

7. Generate weight matrices using number of input nodes, number of hidden
nodes, and number output nodes. (Weights are randomly generated from
a standard normal distribution using the Box-Muller transform).

8. Export the train/test datasets and weights to their respective files.

I arbitrarily chose to use a network with 64 hidden nodes, and trained with
a 0.1 learning rate for 25 epochs. This gives decent overall accuracy (> 90%,
which is fair for the non-critical task of spam detection). Given that this dataset
is much larger than the provided ones, and the network is larger, the training
takes much longer; 25 epochs takes roughly 26 seconds on my system (i7-2600
CPU) with --optimize-level 3, or 30 seconds without it.

1https://archive.ics.uci.edu/ml/datasets/Spambase

8


	Problem description
	File formats
	Train and test datasets
	Network weights
	Evaluation statistics

	Description of implementation
	Tech stack and performance considerations
	Data structures
	Training procedure
	Inference procedure
	Evaluation procedure
	File structure
	Source code
	Note on floating-point precision

	Instructions
	Without entering the REPL
	Using the REPL

	Custom dataset

