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Spectral Estimation 

Overview 
In this project you will explore and compare various parametric and non-parametric techniques for 

power density spectrum (PDS) estimation. The goal is to approximate the PDS with non-parametric  

direct methods, such as the periodogram, periodogram averaging, and the non-parametric  indirect 

Blackman-Tukey method. You will also investigate parametric all-pole modeling for PDS estimation. In 

the process, you will have a chance to sort through many issues involving finite length signals and the 

DFT.  

Suggested Reading:  Sections 10.6, 10.7, and 11.0 to 11.5. 

You are given a signal [ ]y n  that is the result of passing white Gaussian noise with variance one ( 2 1x = ) 

through a system [ ]h n . 

 

[ ] [ ]xx m m =     [ ]* [ ]yy h m h m = −  

Figure 1: Generating [ ]y n  

The goal is to estimate the PDS of [ ]y n , ( )j

yy e  . Recall that: 

2

( ) ( ) ( )j j j

yy xxe H e e   =   

2( ) 1j

xx xe   = =  

2

( ) ( )j j

yy e H e  =  

Thus estimating ( )j

yy e   is equivalent to estimating
2

( )jH e 
. Your goal is to construct estimates of 

2

( )jH e 
 from the samples of the colored noise [ ]y n . 

The data for this project is contained in the file pj2data.mat.  

Copy this file into the local directory where you are working. This file contains two vectors. The vector y 

is a 512-point vector representing the discrete time signal [ ]y n . The vector Hejw2 is a 512-point DFT 

( )jH e   [ ]y n  [ ]x n  
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representing samples of the magnitude-squared response
2

( )jH e 
. It is the desired response that you 

are trying to estimate from [ ]y n . Hejw2 is given to you as a baseline for error calculation. 

You can load the data into your MATLAB environment using the load command. Just cd to the 

directory where you copied pj2data.mat and at the prompt type: 

load pj2data 

Your MATLAB environment will now have two vectors y and Hejw2 defined in it. Warning! If you had 

other variables named y and Hejw2 they will be overwritten by the load command.  

 

Figure 2: Plots of the data in pj2data.mat 

As a first exercise you may want to plot the data y and Hejw2. They are plotted above for your 

convenience.  Note that the k-indices on Hejw2 represent sampled  values in the interval [0, 2 )  (i.e.

2 / 512k k = ). 

In this project you are using the data [ ]y n  to construct estimates 
2

ˆ ( )kj
H e

  of
2

( )kj
H e


, where

2
64

k
kw = . 

Error Criterion: The error criterion is defined as the discrete-squared-error in the frequency domain. 

An expression for the estimation error is given in (1):  

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

n

y[n]

0 50 100 150 200 250 300 350 400 450 500
0

2

4

6

8
|H(ej)|2

M
a
g
n
it
u
d
e

k



S2004b 

 
2 2
64 64

63 2
2 2

0

1 ˆ ( ) ( )
64

k kj j

k

H e H e
 


=

= −  (1) 

Autocorrelation Estimate: The autocorrelation function of a wide-sense stationary signal $y[n]$ is 

defined as: 

 [ ] E{ [ ] [ ]}yy m y n m y n = +  (2) 

In this project, the autocorrelation estimate provided by the observed data of length N  is: 

 
0

1ˆ [ ] [ ] [ ]
N

yy

n

m y n m y n
N


=

= +  (3) 

MATLAB Notes: 
Functions you may find useful in this project include fft(), fftshift(), fliplr(), 

conv(), downsample(), xcorr(), toeplitz(), levinson(), freqz(), sum(), 

abs(), transpose(), ones(), zeros(), triang(). Look at the appropriate help files in 

MATLAB to see how to use them. 

A. Autocorrelation and MATLAB 

The function xcorr() in MATLAB calculates the finite autocorrelation between two sequences. 

Calculate the following sequence 

c yy = xcorr(y, y, 'biased') 

This is similar to the convolution of two finite sequences  y n  and [ ]y n− .  For the first part of this 

exercise, show this fact using the following example:  

1. Take the first 32 points of  y n  (we define this signal as 1[ ]y n ). 

2. Plot the autocorrelation of 1[ ]y n  using xcorr().  

3. Then plot the autocorrelation using the conv() function.  

The two plots you get should be the same, except for a scaling factor. 

Problem A.1 

What does xcorr calculate if you replace 'biased' with 'unbiased'? 

Problem A.2 

(a) The deterministic autocorrelation of 1y  is 
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where 
1

32yN = is the length of 1y . Explain why the Fourier transform of this autocorrelation 

function is a positive, real function. 

(b) Take the 64-point DFT of 1 1[ ]y yc m  using fft command in MATLAB. Plot the absolute value and 

the phase of the DFT of
1 1

[ ]y yc m . What is the relationship between the 64 point DFT of 
1 1

[ ]y yc m  

and the 64 point DFT of
1 1

[ ]d

y y m ? 

(c) Use 1 1[ ]y yc m  and generate a signal whose 64 point DFT, which is calculated by fft, is the same 

as the 64 point DFT of
1 1

[ ]d

y y m .  

Problem A.3 

The PDS is the Fourier transform of the autocorrelation function defined in (2). The Fourier transform of 

1 1
[ ]d

y y m  is an estimate of the PDS, which is the 64-point periodogram of [ ]y n  using a rectangular 

window. The periodogram can be calculated directly from 1[ ]y n  without first convolving it with itself: 

Take a 64-point DFT of 1[ ]y n  and then find its magnitude squared. This will give you a 64-point DFT 

representing 2

1| ( ) |kj
Y e

 . 

For the last part of this exercise, plot three figures: 

(a) The absolute value of the 64-point DFT of 
1 1

[ ]d

y y m , the deterministic autocorrelation sequence. 

(b) The magnitude squared of the 64-point DFT of 1[ ]y n . 

(c) The magnitude squared of the 64-point DFT of the first 64 points of [ ]y n . 

What is the relationship between the three signals in A.3.a, A.3.b and A.3.c ? 

B. Nonparametric PDS Estimation 

Problem B.1 

Estimate the PDS of [ ]y n  using only the first 32-points of the data. Do this by taking the 64-point 

periodogram. Plot the 64 DFT points of the desired frequency response, 
2

( )jH e 
, and your estimate of 

the PDS at 2
64

k
k

 =  on the same plot. Calculate the estimation error as given in (1). 

Problem B.2 

Estimate the PDS using all 512 points. Do this by taking the 1024-point periodogram of [ ]y n . Similar to 

Problem B.1, plot the 64 DFT points of the desired frequency response, 
2

( )jH e  , and your estimate of 

the PDS at those frequencies on the same plot. Calculate the estimation error as given in (1). 
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Problem B.3 

Estimate the PDS using periodogram averaging. Write a script to find the 64-point periodogram of every 

32 non-overlapping samples and average the results (i.e. there will be 512/32 = 16 periodograms to 

average). The  expression for the periodogram averaging is: 

162 2

1

1ˆ ( ) ( )
16

j j

i

i

H e Y e 

=

=   

Similar to Problem B.1, plot the 64 DFT points of the desired frequency response and your estimate on 

the same plot. Comment on any differences between this estimate and the previous two. Calculate the 

estimation error as given in (1). 

Problem B.4 

In this problem you will use the indirect Blackman-Tukey method to estimate the PDS of [ ]y n .  The 

Blackman-Tukey method requires you to first estimate the autocorrelation of [ ]y n . Use the following 

three steps to generate your Blackman-Tukey estimate: 

(1) Estimate the autocorrelation of [ ]y n  using (3) and 512N = . 

(2) Truncate your autocorrelation estimate by using only ˆ [ ]yy m  for 0 15m   (i.e. Do not use 

the estimate of autocorrelation for 15m  .) 

(3) Take the 64-point DFT of the truncated autocorrelation function. 

Similar to Problem B.1, plot 64 DFT points of the desired frequency response and your estimate on the 

same plot. Calculate the estimation error as given in (1). 

Problem B.5 

Format the errors you found in Problems B.1-B.4 in a table and discuss your results. 

(a) Which method performed the best? 

(b) Explain why the Blackman-Tukey method does so well without any averaging. 

(c) Multiply your estimated autocorrelation obtained in part B.4.(2) with [ ]w n , a triangular window 

of size 31 (nonzero for 15 15m−   ) with unit center tap. Take a 64 -point DFT of this new 

estimate. Calculate the estimation error as given in (1). Discuss why the performance is different 

than your result for problem (B.4). 

C. Parametric PDS Estimation 
Estimate the PDS of [ ]y n  using all-pole modeling. Here the stable impulse response h  in Figure 1 is 

modeled with a class of stable filters with the following structure 
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( )
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 (5) 
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. 

The goal is to fit an all-pole model to the data and use that model to estimate ( )j

yy e  . 

Problem C.1 

Formulate the Yule-Walker equations for 2nd through 7th order all-pole models, and solve for the 

coefficients to estimate ( )j

yy e  . Use the values of [ ]yy m  as estimated in Problem B.4. In a table, list 

the coefficients and the prediction error you found for 2, ,7p = . For which order is the prediction 

error minimum? (hint: check out the levinson command in MATLAB) 

Draw the lattice implementation for 3p = . 

Problem C.2 

In addition to finding the denominator coefficients, you must also find the gain factor A . In the Yule-

Walker estimation method, the minimum mean-squared value for A  in the p th-order predictor is given 

by 

( )2
( ) ( )

1

1

ˆ ˆ [0] 1
p

p k

yy k

k

A a
=

= −  

Plot the estimation error as defined in (1) as a function of p . You may find the command freqz() 

helpful. Comment on any interesting features of this error curve. What does this imply about the system 

function ( )jH e 
? What is your best estimate of the number of poles in ( )jH e 

? Compare the 

prediction error to the estimation error. 

Problem C.3 

(a) Another method to find the gain factor A  is to use the Yule-Walker equations. In this case, 2A

the estimate of A  is given by: 

 ( ) ( )

2

1

ˆ ˆ ˆ[0] [ ]
p

p p

yy k yy

k

A a k 
=

= +  (6) 

Show how this equation is obtained. Use ( )

2
ˆ pA  and find the estimation error in (1). Compare 

( )

2
ˆ pA s with the estimates ( )

1
ˆ pA s in Problem C.2. 

(b) Another estimator is defined based on the prediction error signal, ˆ [ ]pw n . The estimator 
3Â  is 

 
2

( )

3

1

1ˆ ˆ [ ]
N

p

p

n

A w n
N =

=   (7) 

Explain how this estimator is obtained. Repeat C.3.a for this estimator. 
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Problem C.4 

MATLAB contains functions called  

(a) periodogram(), 

(b) pwelch(), 

(c) pyulear(). 

View the help files for these functions and explore their use in the context of Problems B.1, B.2, B.3 and 

C. Show how these commands can provide the same results which you obtained for these relevant 

problems . Do not use these functions to find answers in the previous problems in the project. 
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