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1 Linear chirp

The linear chirp is defined by the equation:

x(t) = cos(2πµt2)

Generate a linear chirp with µ = 4.0 × 109, for a 200µs with fs = 5MHz:

mu = 4e9;

duration = 200e-6;

fs = 5e6;

t = 0:(1/fs):duration;

x = cos(2 * pi * mu * t.^2);

Generate a spectrogram for this signal using 256-point FFT’s, a 256-point tri-
angular window, and an overlap of 255 samples between sections.

N_fft = 256;

N_overlap = 255;

spectrogram(x, triang(N_fft), N_overlap, 'yaxis');

This leads to the spectrogram in Figure 1a. If we try to take the instantaneous
frequencies, using the two definitions:

x(t) = cos(2πf1(t)t)

f2(t) =
1

2π

d

dt
φ(t)

then, by the first definition f1, the instantaneous frequency is µt; in the second
definition the instantaneous frequency is 2µt. These are plotted on top of the
spectrogram in Figure 2. It is clear from this figure that the second definition
(using the derivative) is correct; the first definition is consistent with the second
only for constant frequency values, but the second is necessary for non-constant
frequencies. We can compare this with the chirp signal when µ = 1.0 × 1010

(slightly higher). This is shown in Figure 1b. The slope is steeper, and we see
that the spectrogram line “bounces” back after reaching the top (π = 1). This
is due to the Nyquist bandwidth and the fact that going x radians above the
Nyquist bandwidth appears in the digital domain the same as going x below
the Nyquist bandwidth.
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(a) µ = 4.0× 109

200 300 400 500 600 700 800

Samples

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 F
re

qu
en

cy
 (

#
:

 r
ad

ia
ns

/s
am

pl
e)

-150

-100

-50

0

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/(
ra

d/
sa

m
pl

e)
)

(b) µ = 1.0× 1010

Figure 1: Chirp spectrograms

Figure 2: Chirp spectrogram slope
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2 Narrowband and wideband spectrograms

We can produce narrow-band spectrograms of a speech signal to see the funda-
mental frequencies (broad yellow regions) and get good temporal resolution (to
see when tones start and finish):

spectrogram(s1, triang(64), 63, 'yaxis');

spectrogram(s5, triang(128), 127, 'yaxis');

We can also produce wide-band spectrograms of the speech to see harmonics:

spectrogram(s1, triang(1024), 1023, 'yaxis');

spectrogram(s5, triang(1024), 1023, 'yaxis');

S1.mat fundamental frequencies (winlen=64)
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S1.mat formant frequencies (winlen=1024)
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S2.mat fundamental frequencies (winlen=128)
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S2.mat formant frequencies (winlen=1024)
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Figure 3: Speech analysis spectrograms
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3 Modified STFTs

3.1 stft2sig function implementation

A potential pipeline for real-time (or otherwise) signal processing is to take the
STFT, perform some processing on the STFT, and then reconstruct the signal
from this modified STFT. Since adjacent samples of the STFT slices share a
lot of redundant information between its samples (there is usually some overlap
of signal data in adjacent STFT slices), modifying the STFT may ruin these
redundancies and make it not a valid STFT anymore. However, we can do our
best to reconstruct the signal from a modified (but potentially invalid) STFT by
averaging the supposedly redundant parts (which would have no effect if they
were indeed redundant, but has the effect of smoothing over irregularities if the
STFT is invalid). My implementation is shown in Figure 4.

The assignment says to make some assumptions about the FFT length, win-
dow length, and sample overlap. I decided to implement it a little more generally,
and all of these are parameters to the function. My function also infers the FFT
length and number of samples from the input (it assumes the input spectrogram
has the same STFT form as the output of the spectrogram function).

The function first augments the modified STFT with the negative frequencies
(since the spectrogram function only returns the positive frequencies of the
DFT), and then it takes the IFFT of each column (each spectrogram “slice”).

To keep the function general, there are three parameters: mod_stft, win_len,
and overlap_len for the modified STFT, window length, and overlap length,
respectively. This takes the first win_len points from each slice’s IFFT and
places it at the correct position in the output signal, adding it to the current
values there. However, since this may result in (one or more) overlaps, I keep
track of how many times a particular point in the output signal has been over-
laid. The returned signal is that output signal divided by the array keeping
track of how many overlaps there are at each point, thus averaging all over-
lapped signals. This should work for more general cases than the specific case
given in the assignment.

3.2 Example usage

We can test the function as follows (as a basic form of doubling the speed
of the signal vowels while preserving frequency content). Playing back the
reconstructed signal does sound like double the speed of the original signal at
the same pitch (same frequency content).

win_len = 256;

overlap_len = 128;

fft_len = 1024;

sgram = spectrogram(vowels, rectwin(win_len), overlap_len, fft_len);

sgram_faster = sgram(:, 1:2:size(sgram, 2));

reconstructed_faster = stft2sig(sgram_faster, win_len, overlap_len);
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% Given a modified STFT, estimate the signal (perform an estimate

% of the inverse Fourier transform, even if the STFT is not valid)

%

% This function is implemented more generally than the problem set asks

% for.

%

% params:

% mod_stft = modified STFT

% win_len = length of window

% overlap_len = length of window overlap

%

% returns:

% stft = corrected stft

function stft = stft2sig(mod_stft, win_len, overlap_len)

% infer FFT length and samples from STFT dimensions; note that

% this FFT length is equal to half what it should be plus one

% due to the nature of the spectrogram command

[fft_len, samples] = size(mod_stft);

fft_len = (fft_len-1) * 2;

% non-overlap length

nol = win_len - overlap_len;

% augment STFT with negative frequencies

mod_stft = [mod_stft(1:end-1, :); flip(mod_stft(2:end, :))];

% take IFFT columnwise

ifft_sig = real(ifft(mod_stft, fft_len, 1));

% output array contains the results, as well as counting the number

% of overlaps for the averaging process; probably a more efficient

% way to do this but this is pretty general

results = zeros(win_len + (samples-1) * nol, 2);

% grab each sample, add it to the correct position, and increase

% the overlap count for those samples

for i = 1:samples

current_range = ((i-1)*nol+1):((i-1)*nol+win_len);

results(current_range, :) ...

= [ifft_sig(1:win_len, i), ones(win_len, 1)] ...

+ results(current_range, :);

end

% return averaged samples (each sample is divided by its count)

stft = results(:, 1) ./ results(:, 2);

end

Figure 4: Function to estimate a signal from a modified STFT
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