
ECE300 – Pset 5

Jonathan Lam

November 30, 2020

1. Describe when and why we use raised cosine pulses, citing the necessary
conditions, at least one theorem and drawing at least one figure.

Raised cosine pulses are used to achieve the Nyquist zero-ISI criterion,
which states that zero ISI is possible iff the sum of samples of the Fourier
transform (with period 2π/Ts, where Ts is the symbol period) is a constant,
regardless of the starting point of the sampling. The assumption made is
that the channel is a perfect low-pass filter (i.e., constant in the passband),
which is a good-enough approximation for most cases. They are used
because they are more closely realizable than sinc pulses (the tails in the
time-domain representation dies off quicker).

Figure 1: Sample raised cosine with Ts = 1 and α = 0.5

Raised cosine:

Xrc(ω) =


T, 0 ≤ |ω| ≤ π 1−α

T
T
2

(
1 + cos

(
T
2α

(
|ω| − π 1−α

T

)))
, π 1−α

T ≤ |ω| ≤ π 1+α
T

0, π 1+α
T ≤ |ω|

2. True raised cosine pulses are not realizable – why not? What is done in
practice to approximate the raised cosine?

They are not realizable because they are not compact in frequency, and
are thus infinite in time, and thus also noncausal. (The time-domain
representation involves the sinc, which is infinite.) This can be estimated
by truncating the signal (to make it compact in time) and delaying it (to
make it causal).

1

3. Find the entropy of a geometrically distributed random variable (that is,
a variable with probability mass function f(m) = p(1− p)m−1 for positive
integer m and some fixed probability p) as a function of p.

H(X) = E[I(X)] = E[− log f(x)]

=

∞∑
x=1

− log
(
p(1− p)x−1

)
p(1− p)x−1

=

∞∑
x=1

− [log p+ (x− 1) log(1− p)] p(1− p)x−1

=

∞∑
x=1

[−p(log p− log(1− p))] (1− p)x−1 +

∞∑
x=1

[−p log(1− p)]x(1− p)x−1

= p log

(
1− p
p

) ∞∑
x′=0

(1− p)x
′
+ p log

(
1

1− p

) ∞∑
x=1

x(1− p)x−1

Infinite sum formulas:

∞∑
x=0

rx =
1

1− r
(for |r| < 1)

d

dr

[∞∑
x=0

rx

]
=

∞∑
x=1

xrx−1 =
1

(1− r)2
=

d

dr

[
1

1− r

]
(for |r| < 1)

Substituting:

H(X) = p log

(
1− p
p

)
1

1− (1− p)
+ p log

(
1

1− p

)
1

(1− (1− p))2

= log

(
1− p
p

)
+

1

p
log

(
1

1− p

)
= log(1− p)− log(p)− 1

p
log(1− p)

=
p− 1

p
log(1− p)− log p

= log

(
(1− p)1−

1
p

p

)

4. Suppose a source has alphabet {a1, a2, . . . , a8} with corresponding output
probabilities

{
1
16 ,

1
16 ,

1
4 ,

1
32 ,

3
32 ,

1
8 ,

1
16 ,

5
16

}
. Determine the entropy of the

2

source.

H(X) =

8∑
i=1

−pi log pi

=
4

16
+

4

16
+

2

4
+

5

32
+

(
−3 log 3

32
+

15

32

)
+

3

8
+

4

16
+

(
−5 log 5

16
+

20

16

)
=

7

2
− 3 log 3 + 10 log 5

32

=
7

2
− log 263671875

32
≈ 2.626

5. Design a Huffman code for the above source. Validate that it satisfies the
Kraft inequality, and that the average length satisfies the Huffman code
entropy inequalities.

See Figure 2 for a visualization of the designed Huffman coding tree. Table
1 shows the equivalent mappings as a table.

1

0 7
16

00 3
16

000 3
32

0000 1
32

a4

0001 1
16

a1

001 3
32

a5

01 1
4

010 1
8

0100 1
16

a2

0101 1
16

a7

011 1
8

a6

1 9
16

10 1
4

a3

11 5
16

a8

Figure 2: Huffman code tree. Bolded numbers are the codewords (codeword pre-
fixes), and the numbers alongside them are their probabilities. Corresponding
symbols are indicated at the leaves.

Kraft inequality (where li is the length of each word):

N∑
i=1

2−li ≤ 1

In this example:

8∑
i=1

2−li = (4)2−4 + (2)2−3 + (2)2−2 =
4

16
+

2

8
+

2

4
= 1

3

Symbol Code Probability
a1 0001 1/16
a2 0100 1/16
a3 10 1/4
a4 0000 1/32
a5 001 3/32
a6 011 1/8
a7 0101 1/16
a8 11 5/16

Table 1: Huffman code symbol-to-code mapping

thus the Kraft inequality is satisfied. For a Huffman code, the average
length satisfies:

H(X) ≤ l̄ ≤ H(X) + 1

In this example:

l̄ =

8∑
i=1

laipi

=
4

16
+

4

16
+

2

4
+

4

32
+

9

32
+

3

8
+

4

16
+

10

16
=

85

32
≈ 2.656

This satisfies the above inequality, i.e., 2.626 ≤ 2.656 ≤ 3.626.

6. Find the transmission power (in watts) necessary for an AWGN channel
with N0 = 108J and transmission bandwidth B = 1MHz to achieve a
channel capacity of 1Mbps.

The channel capacity assuming AWGN (in bits/sec) is

C = B log

(
1 +

P

PN

)
Solving for P :

PN = N0B

P = N0B
(

2C/W − 1
)

= (108J)(106Hz)
(

2(10
6Hz)/(106Hz) − 1

)
= 1.08× 108W

7. The next several questions will refer to the (n, k) linear block code with
generator matrix 0 1 1 1 0 1 1

1 0 0 1 1 1 1
0 0 1 1 1 0 1


4

What are n and k?

n = 7, k = 3

8. Make a list of every data vector and associated codeword.

XG = C

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1



0 1 1 1 0 1 1
1 0 0 1 1 1 1
0 0 1 1 1 0 1

 =



0 0 0 0 0 0 0
0 0 1 1 1 0 1
1 0 0 1 1 1 1
1 0 1 0 0 1 0
0 1 1 1 0 1 1
0 1 0 0 1 1 0
1 1 1 0 1 0 0
1 1 0 1 0 0 1


There are 8 possible datawords and codewords. Each row of X and the
corresponding row in C represent a dataword and codeword pair, respec-
tively.

9. What is the minimum Hamming distance of the code, dmin? How many
errors can this code correct?

In a linear code, dmin = wmin (minimum distance of a code is equal to the
minimum weight of that code). It is not hard to see that the minimum
weight of this code is 3. Thus this code can detect any error with no more
than 2 bit errors, and correct any case with a single bit error.

10. There exists a systematic code with the same codewords as this code – how
can you know that from looking at the list? It should be straightforward to
create the generator matrix, GS.

If we reduce G to reduced row-echelon form using elementary row opera-
tions, we preserve the row space (and thus the same outputted codewords).
Since the RREF of G has an identity matrix for the first three columns
(i.e., the first three columns are linearly independent), this becomes a sys-
tematic code with the same row space (codewords). (Visually, looking at
the list of codewords, we see that we have a linear code where each of
the datawords forms the first three bits of some codeword, so it should be
possible to construct a systematic code.)

To find GS , swap the first two rows, add (XOR) the third row to (with)
the second row.

GS =

1 0 0 1 1 1 1
0 1 0 0 1 1 0
0 0 1 1 1 0 1

 =
(
I3 P

)
(Alternatively, the three row in GS are the three codewords that begin
with 001, 010, and 001, which can be thought of as a basis for the code-
words/row space.)

5

11. Find the parity check matrix of GS, H.

H =
(
PT In−k

)
=


1 0 1 1 0 0 0
1 1 1 0 1 0 0
1 1 0 0 0 1 0
1 0 1 0 0 0 1


12. Does H work as a parity check matrix for G?

(The following matrix multiplications were performed in MATLAB.)

GHT = GSH
T = 03×4

Thus H works as a parity check for both G and GS . This is a nice property
given that they have the same codewords.

6

