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1. A square wave has period T , amplitude A and duty cycle τ/T (the signal takes value A from
time 0 to time τ , then 0 from time τ to T). Find the Fourier series representation of this
signal.

Let the square wave be x(t), and let cn denote the Fourier coefficients.

cn =
1

T

∫ T

0

x(t) exp(−jωnt) dt

=
1

T

[∫ τ

0

A exp(−j2πnt/T ) dt+
∫ T

τ

(0) exp(−j2πnt/T ) dt

]

=
1

T

[
A

∫ τ

0

exp(−j2πnt/T ) dt+ 0

]
= j

A

T

T

2πn
exp(−j2πnt/T )

∣∣∣∣t=τ
t=0

= j
A

2πn
(exp(−j2πnτ/T )− 1)

Note that this general formula doesn’t work for the n = 0 case, so it needs to be done
manually:

c0 =
1

T

∫ τ

0

A exp(0)dt =
Aτ

T

Plugging into the Fourier series:

x(t) =

+∞∑
n=−∞

cne
j2πnt/T

= c0e
0 +

A

2π

+∞∑
n=−∞
n 6=0

1

n
ejπ/2(e−j2πnτ/T − e0)ej2πnt/T

=
Aτ

T
+
A

2π

+∞∑
n=−∞
n 6=0

1

n

(
ej(π/2+2πn/T (t−τ)) − ej(π/2+2πnt/T )

)
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Alternatively, to express this as a real signal, we know that cn = c∗−n, and therefore the
summand sn := cne

j2πnt/T also has this conjugate symmetry:

sn = cne
jπnt/T =

(
(c∗n)

(
ej2πnt/T

)∗)∗
=
(
c−ne

j2π(−n)t/T
)∗

= s∗−n

Since sn + s−n = sn + s∗n = 2Re sn, the value of the complex sum is the same as twice the
real part of the summand for the nonzero terms. Thus, the Fourier series in terms of real
functions only is:

x(t) =
Aτ

T
+ (2)

A

2π

+∞∑
n=1

1

n

(
cos

(
π

2
+

2πn

T
(t− τ)

)
− cos

(
π

2
+

2πn

T
t

))

2. Does the signal from the previous question have finite energy? Does it have finite power? If
the answer to either question is yes, find the value of the energy or power.

The signal has infinite energy (since it is periodic, and thus has a nondiminishing average
value even as t → ±∞). It does have finite power. Since it is periodic, we only have to
calculate the power over one period:

P =
1

T

∫ T

0

|x(t)|2dt = 1

T

[∫ τ

0

A2dt+

∫ T

τ

02dt

]
=
A2τ

T

3. What is sinc(t) ∗ sinc(t)?
The Fourier transform of a (normalized) sinc function is the rect function. The (pointwise)
product of the rect function with itself is itself, and the inverse Fourier transform of itself is
the normalized sinc function. So, in this case the convolution of sinc with itself is itself.

sinc(t) :=
sinπt

πt

rect(f) :=

{
1 − 1/2 ≤ f < 1/2

0 else

F{sinc(t)}(f) = rect(ω)⇔ F−1{rect(f)}(t) = sinc(t)

sinc(t) ∗ sinc(t) = F−1{F{sinc(t) ∗ sinc(t)}(f)}(t)
= F−1{F{sinc(t)}(f) · F{sinc(t)}(f)}(t)
= F−1{rect(f) ∗ rect(f)}(t) = F−1{rect(f)}(t)
= sinc(t)

In the case of the unnormalized sinc function, its Fourier transform would be a different rect
function, which leads to a similar answer (the only difference being that there would be a
non-unity scaling factor introduced when multiplying the different rect function with itself).

4. Suppose a system acts on signal x and produces output y by the rule

y(t) = |x(t+ 3)|
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Is the system linear? Is the system time invariant? Is the system causal?

The system is not causal because it depends on future values of t (e.g., y(0) is a function of
x(3)). The system is not linear and is time-invariant:

y{cx1 + x2}(t) = |cx1(t+ 3) + x2(t+ 3)|
6= c|x1(t+ 3)|+ |x2(t+ 3)| = cy{x1}(t) + y{x2}(t)

y{x(t)}(t− t0) = |x((t− t0) + 3)| = |x((t+ 3)− t0)| = y{x(t− t0)}(t)

5. Let x(t) be the signal given by cos(2πft) for 0 ≤ t ≤ T and 0 otherwise, where T = 1/f . Find
the Fourier transform, X(ω), of this signal. Demonstrate Parseval’s theorem by comparing
the norms of x and X.

F{cos(2πf0t)}(f) =
1

2
(δ(f + f0) + δ(f − f0))

F{rect(0,T )(t)}(f) =
1

f0
e−jπf/f0 sinc

f

f0

X(f) = F{x(t)}(f) = F{cos(2πf0t) · rect(0,T )(t)}(f)
= F{cos(2πf0t)}(f) ∗ F{rect(0,T )(t)(f)}

=
1

2f0

(
e−jπ(f+f0)/f0 sinc

f + f0
f0

+ e−jπ(f−f0)/f0 sinc
f − f0
f0

)
Parseval’s theorem: ∫ ∞

−∞
|x(t)|2 dt =

∫ ∞
−∞
|X(f)|2 df

Note that the support of x is 0 ≤ t ≤ T and the support of X is −fs/2 ≤ f ≤ fs/2, so we
only have to integrate over these intervals.∫ T

0

|x(t)|2 dt =
∫ fs/2

−fs/2
|X(f)|2 df

I was able to calculate the energy of the signal analytically (
∫ T
0
|x(t)|2 dt = T/2), but the

integration of the latter was messy. Using MATLAB, I was able to check that the right hand
side of the equation was also equal to T/2 by numerical integration (using trapz). With the
parameters given in (6), the value of both integrals is equal to T/2 = 0.25. (Note: if we had
integrated w.r.t. ω rather than f , there would be a scaling factor of 1

2π .)

6. Suppose we pass x(t) from the previous question through the system from question 4. Use
MATLAB to find the amplitude and phase of the output signal’s Fourier transform Y (ω).
Plot X(ω) as well – how do the signals compare?

Parameters used:

• N (samples) = 1000
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• T (sample window) = 10

• fs (sampling frequency) = N/T = 100

• f0 (cosine frequency) = 2

• T0 (cosine period) = f−10 = 0.5

See (Figure 1) for the plots. Comparison of plots:

• As expected from the convolution of a sinc wave with two shifted deltas, |X(f)| looks
like it has has symmetric sinc-like waves centered at ≈ ±f0. |X(0)| = 0, since there is
no DC offset (x(t) has an average value of 0).

• The plot of |Y (f)| has a peak at f = 0 (DC), which makes sense now that the signal
is purely positive. It has its two next-highest peaks at ≈ ±2f0, since | cos(ωt)| looks
somewhat like a sinusoid with double the frequency.

• The phase has changed from linearly increasing in X(f) to linearly decreasing in Y (f).

7. Let z(t) = y(t)cos(64πt+ θ). Write z as a sum of in-phase and quadrature components. Plot
the Fourier transform Z(ω) for θ = π/3, and comment on the effect of the modulation on
amplitude and phase (compared to Y (ω).

z(t) = y(t) cos(64πt+ θ)

= y(t)(cos(θ) cos(64πt)− sin(theta) sin(64πt))

= [y(t) cos θ] cos(64πt)− [y(t) sin θ] sin(64πt)

= zi(t) cos(64πt)− zq(t) sin(64πt)

(In phasor form, this is equivalent to Z = [y(t) cos θ] + j[y(t) sin θ].)

(See (Figure 1) for the plots of z(t) and Z(f).) Notes on amplitude and phase:

• The magnitude plot of |Z(f)| appears like the magnitude plot of Y (f), duplicated with
one centered at ±32Hz (the carrier frequency, as expected).

• The magnitude values in |Y (f)| are about twice the values of the corresponding wave-
forms in |Z(f)|.

• There is hardly any noticeable change in the phase plot.

8. Write a function that takes as an input a time-domain signal and outputs the Hilbert transform
of that signal (also in the time-domain). Plot the Hilbert transforms of x, y and z in the
frequency and time domains.

function res = hilbertTransform(x)
X = fft(x);
len = size(x, 2);
% get signum of frequency;
% +1 for (0, pi), -1 for (-pi, 0)
sgn = [ones(1,floor(len/2), -1*ones(1,ceil(len/2))];
res = ifft(-1j * sgn .* X);

end
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Figure 1: Plots of x(t), y(t), z(t), and their Fourier transforms. See the parameters in (6).

See (Figure 2) for plots of the signals and their Hilbert transforms.

9. Using MATLAB, demonstrate the orthogonality of a signal and its Hilbert transform for all
of x, y and z.

trapz was used to estimate the integral for the inner product:

〈x1, x2〉 =
∫ ∞
−∞

x1(t)x
∗
2(t) dt

The limits for t were [−T, T ], as it was for the previous parts of this problem set. As expected,
the inner products were all close to zero:

|〈x, x̂〉| ≈ 6.255× 10−9

|〈y, ŷ〉| ≈ 1.014× 10−2

|〈z, ẑ〉| ≈ 1.624× 10−8
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Figure 2: Plots of x(t), y(t), z(t), and their Hilbert transforms.

Full MATLAB code:

% PSET1
% Jonathan Lam
% Prof. Frost
% ECE300
% Communications Theory
% 9/7/20

clear; close all; clc;
set(0, 'defaultTextInterpreter', 'latex');

% Q5

% sample details
N = 2000;
T = 10;

6



fs = N/T;

% sinusoid details
f0 = 2;
T0 = 1/f0;

% generate x(t)
t = linspace(-T/2, T/2, N);
x1 = cos(2*pi*f0*t);
x2 = rectangularPulse(0, T0, t);
x = x1 .* x2;

% plot x(t) from -T0 to 2*T0
figure();
subplot(3, 3, 1);
plot(t, x);
xlabel('$t$ (s)');
ylabel('$x(t)$');
title('$x(t)$');
xlim([-T0, 2*T0]);

% plot X(f) (magnitude and phase) for entire Nyquist bandwidth
X = fftshift(fft(x)/fs);
wd = linspace(-pi, pi, N);
f = wd * fs / (2 * pi);
subplot(3, 3, 2);
plot(f, abs(X));
xlabel('$f$ (Hz)');
ylabel('$|X(f)|$');
title('Magnitude of $X(f)$');
subplot(3, 3, 3);
plot(f, unwrap(angle(X)));
xlabel('$f$ (Hz)');
ylabel('$\angle X(f)$');
title('(Unwrapped) Phase of $X(f)$');

% compare x norm, X norm (they are equal)
% these both print out 0.25 (T/2) for the given parameters
fprintf('||x||=%d\n||X||=%d\n', trapz(t, abs(x).^2), trapz(f, abs(X).^2));

% Q6

% recompute x, shifted, and compute and plot y(t) from -3-T0 to -3+2*T0
x1Shifted = cos(2*pi*f0*(t+3));
x2Shifted = rectangularPulse(0, T0, (t+3));
xShifted = x1Shifted .* x2Shifted;
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y = abs(xShifted);
subplot(3, 3, 4);
plot(t, y);
xlabel('$t$');
ylabel('$y(t)$');
title('$y(t)=|x(t+3)|$');
xlim([-3-T0, -3+2*T0]);

% plot Y(f) (magnitude and phase) for entire Nyquist bandwidth
Y = fftshift(fft(y)/fs);
subplot(3, 3, 5);
plot(f, abs(Y));
xlabel('$f$ (Hz)');
ylabel('$|Y(f)|$');
title('Magnitude of $Y(f)$');
subplot(3, 3, 6);
plot(f, unwrap(angle(Y)));
xlabel('$f$ (Hz)');
ylabel('$\angle Y(f)$');
title('(Unwrapped) Phase of $Y(f)$');

% Q7

% compute z(t) and plot on same x-axis as y(t)
z = y .* cos(64*pi*t + pi/3);
subplot(3, 3, 7);
plot(t, z);
xlabel('$t$');
ylabel('$z(t)$');
title('$z(t)=y(t)\cos(64\pi t+\pi/3)$');
xlim([-3-T0, -3+2*T0]);

% compute and plot Z(f)
Z = fftshift(fft(z)/fs);
subplot(3, 3, 8);
plot(f, abs(Z));
xlabel('$f$ (Hz)');
ylabel('$|Z(f)|$');
title('Magnitude of $Z(f)$');
subplot(3, 3, 9);
plot(f, unwrap(angle(Z)));
xlabel('$f$ (Hz)');
ylabel('$\angle Z(f)$');
title('(Unwrapped) Phase of $Z(f)$');

% Q8-9

8



innerProd = @(t, f, g) trapz(t, f .* conj(g));
figure();
signals = [x; y; z];
labels = ['x' 'y' 'z'];
for i = 1:3

signal = signals(i, :);
subplot(3, 1, i);
plot(t, signal, t, abs(hilbertTransform(signal)));
xlabel('t (s)');
ylabel('signal magnitude');
legend([string(sprintf('$%c(t)$', labels(i))), ...

string(sprintf('$\\hat{%c}(t)$', labels(i)))], ...
'interpreter', 'latex');

title(sprintf('$%c(t)$ and $\\hat{%c}(t)$', labels(i), labels(i)), ...
'interpreter', 'latex');

% this should be fairly small (approximately 0) because the signals
% and their hilbert transforms should be orthogonal
fprintf('|<%c(t),\\hat{%c}(t)>|=%d\n', labels(i), labels(i), ...

abs(innerProd(t, signal, hilbertTransform(signal))))
end

% Q8
function res = hilbertTransform(x)

X = fft(x);
len = size(x, 2);
% get signum of frequency; +1 for 0 to pi, -1 for -pi to 0
sgn = [ones(1, floor(len/2)), -1*ones(1, ceil(len/2))];
res = ifft(-1j * sgn .* X);

end

MATLAB text output:

||x||=2.502502e-01
||X||=2.502502e-01
|<x(t),\hat{x}(t)>|=6.255166e-09
|<y(t),\hat{y}(t)>|=1.014327e-02
|<z(t),\hat{z}(t)>|=1.624092e-08
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