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1 Introduction

1.1 On Modulation Schemes and Coding

Practical communications theory has long since evolved from analog-dominated
communication schemes to the binary coding schemes that are useful for dig-
ital systems. In the previous project, we explored several digital modula-
tion schemes, such as PSK and QAM, and we compared differential and non-
differential schemes.

We studied these methods in the context of one-shot communication (i.e.,
one signal corresponding to one message) and the effect of noise on each scheme.
Each scheme is assumed to be transmitted over communication channels with
additive white Gaussian noise (AWGN), and we analyzed their performances as
measured by bit error rate (BER).

Having studied digital modulation schemes (which allow us to transmit dig-
ital signals), we then have to figure out how to encode our data into those
digital signals. That brings us to information theory (in particular coding the-
ory), which allows us to quantize information and develop codes that allow us
to quantify and correct errors.

1.2 Coding Methods

Among the number of coding schemes to be explored in coding theory, this
report will examine Linear Block Codes, through the manipulation and sim-
ulation of code-words in MATLAB.

A (n, k) linear block code is a coding scheme which contains a collection of
M = 2k binary sequences where each are of length n. Each of these sequences
are a Codeword belonging to this block’s Codebook.

Hamming Codes are a special class of linear block codes that achieve the
maximum possible rates for LBCs with a minimum Hamming distance between
any two keywords of three and given their value of n. In a Hamming code, for
some integer m ≥ 3 then the code has n = 2m − 1 and k = 2m −m− 1.

For linear codes, one can create a Generator Matrix, such that all the
codewords in the code are linear combinations of the rows in the generator
matrix. The generator matrix for a (n, k) LBC has dimensions k × n.

In special cases, one may have a Systematic Code, where the first k
columns of a generator matrix are a k × k identity matrix, and thus each code-
word would begin with an identifier for the respective word it represents, i.e., a
block code that has k = 2 would have its first two columns be:[

1 0 · · ·
0 1 · · ·

]
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1.3 Context of the Project

In this project, we deal with systematic codes. Two generator matrices with
dimensions (4, 8) and (4, 12) are provided.

G1 =


1 0 0 0 0 1 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 0 1 1
0 0 0 1 1 1 1 1



G2 =


1 0 0 0 1 1 1 1 0 1 1 0
0 1 0 0 1 0 0 1 1 1 1 0
0 0 1 0 1 1 0 1 1 0 1 1
0 0 0 1 1 0 1 0 1 1 1 1


Parity Check Matrices were created for each code. A parity check matrix
is created directly from systematic generator matrix, i.e., a generator matrix of
form:

G =
[
Ik | P

]
The matrix P formed from the bits to the right of the identity matrix are also
called the parity check bits.

Using these two components, the resulting parity check matrix H would be
an n−k identity matrix, appended to the negative of the transpose of the parity
check bits:

H =
[
−PT | In−k

]
It should be noted that the correctness of a parity check matrix can be verified
via matrix multiplication, if the following matrix equation holds true:

GHT = 0k×(n−k)

The resulting zero product is attributed to the orthogonality between rows of
the generator matrix, (each row being a codeword of the original code) to the
rows of the parity check matrix.

The code being used to generate and utilize these structures are described
in §Methods.
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2 Methods

2.1 Galois Field 2 Arithmetic

We implemented Galois field 2 (henceforth denoted F2) addition and multipli-
cation in MATLAB by defining separate functions for each. To implement this
arithmetic, we used the mod function since the F2 addition and multiplication
operations are equivalent to ordinary matrix operations over the field R modu-
lus 2. Note that these functions can be used for scalar values (i.e., degenerate
matrices). Our implementations are shown in Figure 1.

function sum = galois2_add(A, B)

sum = mod(A + B, 2);

end

(a) Addition

function prod = galois2_multiply(A, B)

prod = mod(A * B, 2);

end

(b) Multiplication

Figure 1: Implementing F2 arithmetic on MATLAB arrays (or scalars).

2.1.1 Alternative Methods for F2 Arithmetic

MATLAB has a built-in F2 type that can be created with gf2(). It appears
to be a special wrapper around uint8 matrices that overloads several matrix
operations, (most notably the addition and multiplication field operations) and
only allows values of unity and zero. We were able to implement this for most
of the basic operations, but failed when we had to deal with NaN values. We
assume that this would perform better than our implementation, since it uses
smaller datatypes and fixed-point (integral) calculations.

Using the understanding that operations modulo two (and only dealing with
values of unity and zero) act similarly to bitwise operations, we also wondered
if these would improve the performance of our simulation. These functions are
shown in Figure 2. While these produced the same results as the implementation
shown above, this actually performed roughly 10% slower. Our conjecture is
that floating-point modulus is implemented as a native instruction (e.g., fmod),
while bitwise operations are only defined on integral types (and thus require an
extra FP-to-int and int-to-FP operation) for each F2 operation, which could be
more expensive than the benefits that bitwise operations provide.

2.2 Simulating the Binary Symmetric Channel

The next step was to simulate corruption of a bitstring in order to simulate
a binary symmetric channel. We used the rand function to create an array
of random bit values Bernoulli-distributed between 0 and 1 with probability
Perr, and used this to corrupt a provided bitstring (a F2 array). The function
implementation is shown in Figure 3.
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function sum = galois2_add_alt(A, B)

sum = bitxor(A, B);

end

(a) Addition

function prod = galois2_multiply(A, B)

prod = bitand(A * B, 1);

end

(b) Multiplication

Figure 2: Bitwise implementation of F2 arithmetic.

function corrupted = corrupt_bitstring(str, p_err)

corrupted = galois2_add(str, rand(size(str)) < p_err);

end

Figure 3: Bit corruption with error probability p_err

2.3 Generating the Parity Check Matrix H

We wrote a function to find H for a given systematic code using the definition
of H:

function H = parity_check(G)

[k,n] = size(G);

P = G(:, (k+1):end);

I = eye(n - k);

H = [P.' I];

end

Figure 4: Generating the parity check matrix H for a LBC given G.

Then, we found the truncated syndrome array by multiplying the first word
in each row - just the word of errors - of the truncated standard array by H in
Galois field 2.

2.4 Correctable and Detectable Errors

To determine the maximum number of correctable errors, it was necessary to
first determine the minimum Hamming distance between any two codewords
in the code. This was simple to do given that dmin = wmin in a LBC (proof
deferred to class notes or the textbook), and the minimum hamming weight can
be found by finding the codeword with the fewest number of set bits (ones).

Using this function we found that the dmin are 3 and 5 for codes 1 and 2,
respectively. Using the formula for the maximum correctable errors:

ec =

⌊
dmin − 1

2

⌋
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function min_dist = min_hamming_distance(code)

min_dist = min(sum(code(2:end,:), 2));

end

Figure 5: Finding the minimum Hamming distance between two codewords of
a code using the property that dmin = wmin.

and found the maximum correctable errors to be 1 and 2, respectively. If the
number of errors exceeds this number for any code, the codeword is not cor-
rectable because there is no unique closest codeword. However, as long as the
error does not transform the original codeword into another codeword, the error
is detectable. In this case, the receiver will still know that there were at least
as many bit errors as the minimum Hamming distance between the received
bitstring and any other codeword.

2.5 Generating the Truncated Syndrome Array

Normally, the standard array is a 2n−k × 2k matrix that contains all of the
possible 2k possible n-bit strings, with each row representing all possible errors
resulting in a unique n-bit string that is not a codeword (except for the first
row, in which the “error” is the n-bit zero string). We were only concerned with
finding correctable errors, so we constructed a truncated standard array with
only ec bit errors for each code. In general, with a maximum of ec correctable
errors, this truncated standard array would have r rows (i.e., number of cor-
rectable errors, plus one if we include the no-error case), where r can be found
by the following equation:

r =

ec∑
i=0

(
n

i

)
In other words, we count up the number of ways zero errors can be performed
(this is always the first row of the standard array), the number of ways one error
can be performed, the (distinct) number of ways two errors can be performed,
and so on until the number of correctable errors is reached. In our case, the
first truncated standard array has r = 1 + 8 = 9 rows and the second truncated
standard array has r = 1 + 12 + 66 = 79 rows. The ful standard arrays of the
first and second codes have 16 and 512 rows, respectively.

We can obtain the truncated syndrome array from the truncated standard
array by applying the parity check matrix to any element in each row of the
array. This holds because of a theorem discussed in class that states that every
row of the standard array (and therefore the truncated standard array) is a
coset, so that the parity check matrix H applied to any word in the row results
in the coset leader, called the syndrome. This means that a matrix can be
turned a single column, which leads to a large memory saving.
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2.6 Error Correction

To correct errors efficiently for each code, we stored a hashtable (for O(1)
lookups) that maps each syndrome to its corresponding error. Since each syn-
drome and error are multiple-valued (matrices. which are not hashable by de-
fault), we first “hash” these by taking the decimal representation of both the
syndromes and the errors. When the syndrome of a received word is found in
this hashtable, then it be corrected by adding it to the received code (since
addition is the same as subtraction in F2 arithmetic). Conversely, if it is not
found, the error was not correctable since the truncated standard array contains
all correctable errors. To signify this we set all the bits in the estimated received
word to NaN. The implementation for the error correction is shown in Figure 6.

% correct_errors: returns corrected codeword if correctable,

% otherwise NaN

%

% params:

% SE_map= container.Map instance mapping syndromes to errors

% H = parity check matrix for the code

% X = received word ((# words) x N)

% returns:

% Xhat = estimated codeword if correctable, else NaN

function Xhat = correct_errors(SE_map, H, X)

% hashmap can only be accessed linearly (not vectorizable),

% so this has to be implemented in a loop

Xhat = zeros(size(X));

for i = 1:size(X, 1)

x = X(i, :);

try

Xhat(i,:) = galois2_add(x, ...

de2bi(SE_map(bi2de(...

galois2_multiply(x, H.'))), length(x)));

catch

% if not found in SE_map

Xhat(i,:) = NaN * ones(size(x));

end

end

end

Figure 6: Correcting correctable errors in the codeword. Note that we allow
arbitrary matrices (in which each row is a codeword) as the input X, for the
convenience of the caller.
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3 Discussion

3.1 Bit Error Rate Comparison

This project explored two different error correction schemes. The first code is a
(8, 4) LBC and the second one is a (12, 4) LBC. Both codes are systematic codes.
For each code the bit error rate was calculated over a range of transmission bit
error probabilities (ranging from 0.001 to 0.1).

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
Perr

0

0.05

0.1

0.15

B
E
R

Bit error rate vs. bit corruption rate

Uncoded
Encoded 1 (n=8;k=4)
Encoded 2 (n=12;k=4)

Figure 7: Error corrections schemes probability of error and corruption rates

We plot the different BERs over the range of transmission bit error prob-
abilities for the two different schemes in Figure 7. Clearly the second scheme
is better than the first scheme. The first scheme noticeably has larger bit rate
error for the range of probabilities of error given, which makes sense given its
ability to correct one more bit errors per codeword (the classic redundancy-error
tradeoff). The probability of n errors occurring in the binary symmetric channel
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is Pn
err, and thus even with the highest Perr tested, a non-correctable word is

10 times more likely to arise in the first code than in the second.
Note that the bit error rate (BER) using the first code actually overtakes the

BER without an error correction scheme at around Perr = 0.055, meaning that
in channels noisier than this, using no code seems be more reliable than using
the first code. While this seems confusing, the reason for this is that our analysis
between the encoded and uncoded schemes is different: when a detectable (but
uncorrectable) error is found for the encoding scheme, then the entire word is
thrown out (resulting in n errors); however, for the uncoded scheme, a single
bit error is not regarded as the loss of an entire word; we only count the bits
that are wrong.

The difference is that the encoded scheme (very likely) detects when a error
has occurred in a codeword, and thus marks the entire word as wrong (and will
most likely request re-transmission), while the uncoded scheme cannot tell when
a code is incorrect without the use of some higher-level error checking scheme
(e.g., checksumming). In other words, the “bit error rate” shown here for the
encoded schemes is the number of words with a detected error divided by the
total number of transmitted words, whereas the “bit error rate” shown here for
the uncoded scheme is the total number of bit errors (which cannot be detected
by the receiver) divided by the total number of transmitted bits. Clearly there
is a discrepancy here in the interpretation (which comes from the phrasing of
the question in the assignment). If we were to interpret the uncoded scheme
in the former way, then no errors would ever be detected even when there are
errors proportional to (roughly equal to) the transmission bit error; conversely,
if we were to interpret the encoded scheme in the latter way, the bit error rate
would be lower than the transmission bit error due to the fact that it has the
ability to correct some errors. To summarize, the percentage of incorrect words
should be lower for both encoded schemes than for the uncoded scheme.

3.2 The Truncated Syndrome Array

A truncated syndrome array was created in this project rather than the full
syndrome array. This consists of the syndromes of all errors containing at most
ec bit errors. Errors with more than ec map codewords to bitstrings that lie
equidistant (in the Hamming sense) to at least two other codewords, or map
codewords to other codewords; there is no way to choose the most reasonable
correction, so we toss these words.

What we do with tossed words is application-dependent. For situations re-
quiring high reliability, such as file transfer or any secure information transfer,
it would make sense for a client (receiver) to re-request the corrupted words
until it gets a word without corruption (and even then, it should check for
non-detectable errors using other methods like checksums). For low-reliability
situations, especially non-critical and low-latency (e.g., real-time in the con-
sumer sense but not in the RTOS sense) applications like streaming, the tossed
words may be discarded or re-requested depending on the communication chan-
nel bandwidth and rate, desired quality of communication, desired latency, etc.
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4 Appendix: Source code

The code to generate the standard arrays and syndrome arrays for codes 1 and
2 is shown in Figure 8.

The code that drives the simulation and evaluation of the bit error rate after
transmission for the uncoded and encoded schemes is shown in Figure 9. The
standard output of this script, which comprises logging information about the
probabilities of errors calculated and the elapsed time taken, is shown in Figure
10. The given output comes from running the simulation script on an i7-2600
CPU. It is evident from these slow output times (≈ 400s for 100,000 codewords,
a small number these days considering modern network speeds in the hundreds
of megabits per second) that a CPU is not an optimal encoder and decoder
for these schemes; it is probably much faster to use dedicated hardware with
hardcoded logic and higher parallelization.

The source code for this project can also be found at https://github.com/
jlam55555/ece300-proj3.
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%% This file generates the syndrome arrays S1 and S2 (corresponding to

% codes c1, c2)

clc; clear; close all;

% sac = standard array correctable

load('code.mat');

%% code 1

corr1 = 1;

k1 = 4;

n1 = 8;

sac_1 = zeros(8+1, 2^k1, n1);

% first row of standard array is no errors

sac_1(1, :, :) = c1;

I = eye(n1);

for i = 1:n1

sac_1(i+1, :, :) = galois2_add(c1, I(i, :));

end

% create

E1 = reshape(sac_1(:, 1, :), [], n1);

S1 = galois2_multiply(E1, parity_check(G1).');

SE_map1 = containers.Map(bi2de(S1), bi2de(E1));

%% code 2

corr2 = 2;

k2 = 4;

n2 = 12;

sac_2 = zeros(1+12+12*11/2, 2^k2, n2);

% 12

I = eye(n2);

% first row of standard array is no errors

sac_2(1, :, :) = c2;

counter = 2;

for i = 1:n2

sac_2(counter, :, :) = galois2_add(c2, I(i, :));

counter = counter + 1;

end

for i = 2:n2

mat = I(i, :);

for j = 1:i-1

sac_2(counter, :, :) = galois2_add(c2, mat + I(j, :));

counter = counter + 1;

end

end

E2 = reshape(sac_2(:, 1, :), [], n2);

S2 = galois2_multiply(E2, parity_check(G2).');

SE_map2 = containers.Map(bi2de(S2), bi2de(E2));

%% save to .mat file

save('syndrome.mat', 'E1', 'S1', 'SE_map1', 'E2', 'S2', 'SE_map2');

Figure 8: Script to generate the standard and syndrome arrays



%% Q8: Evaluate the performance of the error correction

clc; clear; close all;

set(0, 'defaultTextInterpreter', 'latex');

load('code.mat'); % c1, c2, G1, G2

load('syndrome.mat'); % S1, S2, E1, E2, SE_map1, SE_map2

[K1, N1] = size(G1);

[K2, N2] = size(G2);

H1 = parity_check(G1);

H2 = parity_check(G2);

%% randomly generate 10^5 words for each scheme & encode

word_count = 1e5;

uncoded1 = de2bi(randi(2^K1-1, word_count, 1), K1);

uncoded2 = de2bi(randi(2^K2-1, word_count, 1), K2);

encoded1 = galois2_multiply(uncoded1, G1);

encoded2 = galois2_multiply(uncoded2, G2);

%% randomly corrupt bits with variable error probability

p_errs = linspace(1e-3, 1e-1, 20);

% results matrix

bers = zeros(3, length(p_errs));

tic();

for i = 1:length(p_errs)

% note: this takes a while.....

p_err = p_errs(i);

fprintf('(%fs) Simulating p_err=%f\n', toc(), p_err);

bers(:, i) = [

ber(corrupt_bitstring(uncoded1, p_err), uncoded1); ...

ber(correct_errors(SE_map1, H1, ...

corrupt_bitstring(encoded1, p_err)), encoded1); ...

ber(correct_errors(SE_map2, H2, ...

corrupt_bitstring(encoded2, p_err)), encoded2)

];

end

%% plot results

uncoded_bers = bers(1, :);

encoded1_bers = bers(2, :);

encoded2_bers = bers(3, :);

figure('visible', 'off', 'Position', [0 0 1000 750]);

plot(p_errs, uncoded_bers(:), ...

p_errs, encoded1_bers(:), ...

p_errs, encoded2_bers(:));

grid on;

title('Bit error rate vs. bit corruption rate');

xlabel('$P_{err}$');

ylabel('BER');

legend(["Uncoded", "Encoded 1 (n=8;k=4)", "Encoded 2 (n=12;k=4)"], ...

'Location', 'northwest');

exportgraphics(gca(), 'ber_vs_bcr.pdf');

Figure 9: Driver script for evaluating and plotting the BER



(0.000116s) Simulating p_err=0.001000

(19.434827s) Simulating p_err=0.006211

(38.710674s) Simulating p_err=0.011421

(57.417325s) Simulating p_err=0.016632

(76.253500s) Simulating p_err=0.021842

(96.177417s) Simulating p_err=0.027053

(115.950588s) Simulating p_err=0.032263

(135.571747s) Simulating p_err=0.037474

(155.492180s) Simulating p_err=0.042684

(175.412776s) Simulating p_err=0.047895

(195.985129s) Simulating p_err=0.053105

(216.431429s) Simulating p_err=0.058316

(236.948146s) Simulating p_err=0.063526

(257.570973s) Simulating p_err=0.068737

(278.481355s) Simulating p_err=0.073947

(299.737082s) Simulating p_err=0.079158

(322.724341s) Simulating p_err=0.084368

(345.474427s) Simulating p_err=0.089579

(368.047150s) Simulating p_err=0.094789

(391.268665s) Simulating p_err=0.1000

Figure 10: Simulation script standard output
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