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1 Overview
Analog modulation schemes are at the core of all modern communication schemes. In this project,
four common modulation schemes – conventional amplitude modulation, single side-band amplitude
modulation, phase modulation, and frequency modulation – are implemented in MATLAB. In this
report, we first review some of the modulation theory. We demonstrate that these signals faithfully
recreate the original message after modulation and demodulation, and that the modulation is cor-
rect. Then, after adding additive white gaussian noise (AWGN) random processes, simulations are
performed to analyze the effect of modulation scheme parameters and noise variance on the signal-
to-noise ratio (SNR) on the different schemes. The relationship between SNR and noise power, and
the relationships between SNR and the various parameters of the modulation schemes, generally
agreed with the theory. The theoretical SNR calculations are compared with the experimentally-
computed SNR values. SNR values comparable to theoretical values are obtained for all but FM.
In addition to the requirements of this project, some additional checks were performed to verify the
behavior of the modulated signals and also generally agreed with the theory.

1.1 Procedure
The assignment called for the following:

1. Read in an audio signal (and its sampling rate).

2. Write modulator/demodulator implementations for each modulation scheme. Make sure that
the behavior seems correct. Verify Carson’s rule.

3. Generate three zero-mean, different-variance AWGN noise processes. Add these to the mod-
ulated outputs of each system, demodulate them, and calculate the SNR of the demodulated
signals experimentally. Compare these with the theoretical results.

4. Choose a noise process for each of conventional AM, FM, and PM which makes the demod-
ulated output qualitatively noisy (but recognizable). Vary the modulation indices of each of
these schemes by a factor of two in both directions, and calculate the SNR of the demodulated
signals experimentally. Compare these with the theoretical results.

Reading in the audio file is described in 8. The implementations of the modulator and demodulator
functions for each scheme are described in 2. Plots of the results appear in 3 and are discussed in
4.

1.2 Execution environments and resource usage
In order to emulate reasonable frequencies for the modulation schemes, I originally had the carrier
and sampling frequencies set fairly high. The carrier frequency was set around 600kHz for amplitude
modulation and around 1MHz for angle modulation, and the sampling rates were set to ten times
those frequencies. Even though this AM carrier is on the lower end of the AM spectrum, and the
FM carriers are far lower than real carriers, the lower end of which is at 88MHz [1], this was quite
heavy on my computers. This caused many vectors with dozens of millions of double floating-point
samples, which took dozens of seconds to run and took over 30GB of RAM when running on my
Intel S5520UR server.
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Another problem I encountered with these high frequencies is that there was often significant
numerical error, especially with my FM signal. Interestingly, this happened very clearly when
advancing the sampling rate to over 5MHz, or the carrier frequency to over 500kHz.

As a result of both the resource consumption issues and numerical errors associated with the
multi-megahertz frequency ranges, I lowered the carrier and sampling frequencies for the angle
modulation. While this becomes even less unrealistic for angle modulation, it did help alleviate
both of these problems. A plot of the FM demodulated signal is Figure 16, and a plot of the FM
demodulated signal with the lower carrier and sampling frequency is Figure 5.
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2 Review of modulation schemes
Conventional AM, SSB AM, FM, and PM schemes are covered in this section. We also covered
DSB AM and vestigial AM in class, but these are not covered here.

2.1 Conventional (CONV) AM modulation
2.1.1 Overview

Conventional AM (henceforth denoted CONV) is amplitude modulation with an offset, such that
the modulation envelope is always positive and thus can be cheaply extracted with an envelope
detector. Given a message signal m(t), where |m(t)| ≤ 1, modulation index 0 ≤ a ≤ 1 (greater
values of a are possible but cause overmodulation, or clipping), carrier frequency fc, and carrier
amplitude Ac, the modulation involves scaling and shifting m, and then mixing this with a carrier
tone. The modulated signal u(t) is:

uconv(t) = Ac(1 + am(t)) cos(2πfct) (1)

Demodulation can be performed in two ways:

1. By mixing with the carrier signal (i.e., an I-Q demodulator with only an I component), which
can be obtained by using a narrowband filter similar to in DSB-SC AM demodulation.

2. By rectifying and low-pass-filtering the signal (i.e., performing an envelope detection). Either
full-wave or half-wave rectification can be used. This method is ubiquitous because it is cheap
to implement in hardware.

Additionally, the demodulator has to:

• DC block (e.g., with a HPF) to remove the offset

• Divide the output by aAc to get back to the original output amplitude (power)

• Scale the output up in order to compensate for energy lost during the LPF/HPF

2.1.2 Analysis

Let Pu be the total transmitted (bandpass) (modulated signal) power, Pc is the power in the
transmitted signal sent in the carrier, Py is the power in the transmitted signal for the message
signal, and Pm is the power of the original normalized message signal.

Pu = Pc + Pm (2)

Pc =
A2
c

2
(3)

Py =
a2A2

c

2
Pm (4)

Since Pm < 1 (since |m(t)| < 1) and |a| < 1, at least half of the power is always sent in the carrier.
The SNR can be estimated by assuming an I-Q demodulation scheme. This doesn’t account for

rectification noise and is thus not perfect, but it is good enough. Let r(t) be the noiseless received
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message signal after mixing with the carrier tone (and ignoring the carrier power, which can be
removed with a DC block). Let y(t) denote the message part of the signal, and n(t) denote the
additive noise incurred during transmission.

r(t) =
1

2
Ac(1 + am(t)) cos(2πfct) + nI(t) cos(2πfct) + nQ(t) sin(2πfct) (5)

→ 1

2
Ac(am(t)) + nI(t) (after DC block and mixing with cosine)

Py =
a2A2

4
Pm (6)

Pr =
2N0W

4
(7)

SNR =
a2A2

c

2N0W
Pm (8)

The calculation for noise power was derived in the analog domain. See 10 for details about the
digital domain calculation.

2.1.3 Implementation details

The modulation function is fairly straightforward. Notes on demodulation:

1 % modulates a signal using the conventional AM scheme
2 % params:
3 % f_c = frequency of carrier (Hz)
4 % A_c = carrier amplitude
5 % a = modulation index
6 % sig_m = message signal
7 % f_s_m = message sampling frequency (Hz)
8 % f_s_c = carrier sampling frequency (Hz)
9 % returns:

10 % sig_c = conventional AM-modulated signal
11 function sig_c = conv_mod(f_c, A_c, a, sig_m, f_s_m, f_s_c)
12 duration = length(sig_m) / f_s_m;
13 t_m = linspace(0, duration, length(sig_m));
14 t_c = linspace(0, duration, f_s_c * duration);
15

16 % upsample sig_m
17 sig_m_us = interp1(t_m, sig_m, t_c);
18

19 % generate conventional AM-modulated signal
20 sig_c = A_c * (1 + sig_m_us * a) .* cos(2 * pi * f_c * t_c);
21 end

Listing 1: Conventional AM modulation
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• I perform the latter demodulation scheme because it is more common.

• Half-wave rectification was arbitrarily chosen for my implementation of the demodulation.

• The LPF and HPF are the frequency response of first-order systems.

• A HPF with an arbitrarily low cutoff frequency was used to help alleviate a low-frequency
noise caused by rectification.

• An additional “DC block” is performed by subtracting the mean of the filtered signal, since
the HPF doesn’t always perfectly center the signal.

• The constant 3.3 was empirically determined to recover the energy lost from the rectification
and LPF. This constant scaler seemed to work pretty well for a variety of input samples. I
wasn’t able to find a way to do this analytically, especially because rectification is a nonlinear
function.

• The original signal amplitude was recovered by dividing by Aca.

Note that the SNR equation for conventional AM doesn’t assume that the original amplitude is
restored (i.e., by dividing by Aca); thus, when computing SNR experimentally, we have to re-
multiply the scaled output by Aca.
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1 % demodulates a signal modulated using the conventional AM scheme
2 % params:
3 % sig_c = conventional-AM modulated signal
4 % A_c = carrier amplitude
5 % a = modulation index
6 % f_s_c = carrier sampling rate (Hz)
7 % tau = LPF cutoff (Hz)
8 % returns:
9 % sig_c = demodulated signal at lower frequency

10 function sig_m = conv_demod(sig_c, A_c, a, f_s_m, f_s_c, tau)
11 % half-wave rectification
12 sig_c(sig_c < 0) = 0;
13

14 % low-pass filtering in freq. domain
15 wd = linspace(-pi, pi, length(sig_c));
16 f_c = wd * f_s_c / (2 * pi);
17 lpf = (1 + f_c/tau*1j).^-1; % LPF frequency response
18 hpf = (1 - 20*f_c.^-1*1j).^-1; % HPF to get rid of offset
19 % and rectifier noise
20 ft_c = fftshift(fft(sig_c)) / f_s_c; % freq. domain rectified signal
21 ft_c = lpf .^ 2 .* hpf .* ft_c; % apply filter in freq. domain
22

23 sig_c = ifft(ifftshift(ft_c) * f_s_c);
24

25 % downsample
26 duration = length(sig_c) / f_s_c;
27 t_c = linspace(0, duration, f_s_c * duration);
28 t_m = linspace(0, duration, f_s_m * duration);
29 sig_m = real(interp1(t_c, sig_c, t_m));
30

31 % DC block
32 sig_m = sig_m - mean(sig_m);
33

34 % scaling; the extra factor is empirically determined to account for
35 % the power in the carrier lost when filtering
36 sig_m = 3.3 * sig_m / A_c / a;
37 end

Listing 2: Conventional AM demodulation
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2.2 SSB AM modulation
2.2.1 Overview

Single-sideband amplitude modulation aims to be more bandwidth efficient than the other AM
schemes. It does this by employing the Hilbert transform to encode some of its information into a
quadrature component. Given a message signal m(t), the transmitted modulated signal looks like
(some of the terms used in conventional AM will not be redefined here):

u(u|l)ssb(t) = Ac (m(t) cos(2πfct)∓ m̂(t) sin(2πfct)) +Ap cos(2πfct) (9)

Both modulation and demodulation occur using an I-Q (de)modulator. A pilot tone is necessary to
ensure coherence, and a narrow-band filter and mixer are required in the demodulator to employ the
pilot tone. These additions make SSB-AM also power-inefficient (as, like conventional AM, much
of the power is in the carrier signal), and expensive (as it requires a mixer circuit and narrow-band
filter.)

2.2.2 Analysis

Examining the power transmitted by this signal:

Pu = Pc + Py (10)

Pc =
A2
p

2
(11)

Py =
A2
c

2
Pm +

A2
c

2
Pm̂ = A2

cPm (12)

Again, a large portion of the power is transmitted in the carrier signal. Twice as much power is
transmitted in the message part of the signal as in conventional AM (assuming that a = 1), but
there is also twice as much noise power, which contributes to a SNR that is equal to that of DSB
SC (and roughly equal to that of conventional AM, assuming that a = 1). Let r(t) again be the
received signal,

r(t) = (Acm(t) + nI(t)) cos(2πfct)− (±Acm̂(t) + nQ(t)) sin(2πfct) (13)

→ Ac
2
m(t) +

1

2
nI(t) (after mixing with cosine)

Py =
A2
c

4
Pm (14)

Pn =
1

4
N0W (15)

SNR =
A2
c

N0W
Pm (16)

Again, the calculation for noise power was derived in the analog domain. See 10 for details about
the digital domain calculation.

2.2.3 Implementation details

See 9.2 for the implementation of the Hilbert transform. The modulator follows the definition of
SSB fairly closely, and easily allows for both USSB and LSSB. Notes on demodulation:
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1 % modulates a signal using the SSB AM scheme; currently assumes phase
2 % coherence (no pilot tone in modulated signal)
3 % params:
4 % f_c = carrier frequency (Hz)
5 % A_c = carrier amplitude
6 % sig_m = message signal
7 % f_s_m = message sampling frequency (Hz)
8 % f_s_c = carrier sampling frequency (Hz)
9 % ussb = whether it is USSB (true for USSB, false for LSSB)

10 % returns:
11 % sig_c = SSB AM-modulated signal
12 function sig_c = ssb_mod(f_c, A_c, sig_m, f_s_m, f_s_c, is_ussb)
13 duration = length(sig_m) / f_s_m;
14 t_m = linspace(0, duration, length(sig_m));
15 t_c = linspace(0, duration, f_s_c * duration);
16

17 % upsample sig_m
18 sig_m_us = interp1(t_m, sig_m, t_c);
19

20 % generate in-phase component (same as DSB-SC AM-modulated signal)
21 sig_dsbsc = sig_m_us .* cos(2 * pi * f_c * t_c);
22

23 % generate quadrature component
24 sig_mhat = hilbert_transform(sig_m_us);
25 sig_quad = sig_mhat .* sin(2 * pi * f_c * t_c);
26

27 if is_ussb
28 sig_c = A_c * (sig_dsbsc - sig_quad);
29 else
30 sig_c = A_c * (sig_dsbsc + sig_quad);
31 end
32

33 % add pilot tone
34 A_p = 1;
35 sig_c = sig_c + A_p * cos(2 * pi * f_c * t_c);
36 end

Listing 3: SSB AM modulation

• A narrow-band filter would be hard to realistically construct in MATLAB, and I did not get
very far with my approximations for one (using only first-order filters). Thus, we abstract
away these hardware details, assume phase coherence, and use a pure generated cosine and
sine with no phase offset for the I-Q demodulation.

• A first-order LPF and HPF were designed for this function.
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• The LPF is largely intended to filter out the double-carrier-frequency signal generated from
I-Q mixing, and the HPF reduces any low-frequency noise and the DC component caused by
the I-Q mixing.

1 % demodulates a signal modulated using the SSB AM scheme; currently
2 % assumes phase coherence (no pilot tone in modulated signal)
3 % params:
4 % sig_c = SSB AM-modulated signal
5 % f_c = carrier frequency (Hz)
6 % A_c = carrier amplitude
7 % f_s_m = baseband sampling frequency
8 % f_s_c = carrier sampling frequency (Hz)
9 % tau = LPF cutoff frequency

10 % returns:
11 % sig_m = demodulated signal at baseband sampling frequency
12 function sig_m = ssb_demod(sig_c, f_c, A_c, f_s_m, f_s_c, tau)
13 duration = length(sig_c) / f_s_c;
14 t_c = linspace(0, duration, f_s_c * duration);
15 t_m = linspace(0, duration, f_s_m * duration);
16

17 % demodulate in-phase component
18 sig_c = sig_c .* cos(2 * pi * f_c * t_c);
19

20 % low-pass filtering in freq. domain; set cutoff frequency to carrier
21 % frequency
22 wd = linspace(-pi, pi, length(sig_c));
23 f_c = wd * f_s_c / (2 * pi);
24 lpf = (1 + f_c/tau*1j).^-1; % LPF frequency response
25 hpf = (1 - 20*f_c.^-1*1j).^-1; % HPF to remove low frequency
26 % distortion from pilot
27 ft_c = fftshift(fft(sig_c)) / f_s_c; % freq. domain rectified signal
28 ft_c = lpf .* hpf .* ft_c; % apply filter in freq. domain
29 sig_c = ifft(ifftshift(ft_c) * f_s_c);
30

31 % scale and downsample
32 sig_m = real(interp1(t_c, sig_c, t_m));
33

34 % scale back up to original amplitude
35 sig_m = 2 * sig_m / A_c;
36 end

Listing 4: SSB AM demodulation
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2.3 PM Modulation
2.3.1 Overview

Phase modulation involves encoding the message into the phase φ(t) of the carrier signal:

φ(t) = kpm(t) (17)

where kp is an arbitrary scaling constant. We also define the modulation index, βp:

βp := kp max |m(t)| (18)

This modulation index indicates the maximum phase deviation, ∆φmax. If we adjust the message
signal so that its maximum value has unity amplitude, it makes the maximum deviation simply kp.
The modulated signal looks like:

upm(t) = Ac cos(2πfct+ φ(t)) (19)
= Ac(cosφ cos(2πfct)− sinφ sin(2πfct)) (20)
≈ Ac(cos(2πfct)− φ sin(2πfct)) (φ� 1) (21)

These three forms of the equation lend them to three modes of demodulation (and also multiple
modes of modulation).

• If we differentiate the form in (19) (e.g., using an inductor), then we get:

u′pm(t) = −Ac(2πfc + φ′(t)) sin(2πfct+ φ(t)) (22)

This has the same form as conventional AM, where the offset is 2πfc (sufficiently large) and
the message signal is φ′(t). By rectifying and LPF-ing, this can produce the envelope, φ′(t).
This can then be integrated (e.g., by using a capacitor), then divided by kp in order to recover
the original message. This method would introduce some rectification noise, but is cheap to
implement like conventional AM. This method also does not require sending an additional
pilot tone.

• The form in (20) is an I-Q decomposition of the PM-modulated signal, which can be I-Q
demodulated to reproduce I = cosφ and Q = sinφ. φ can be recovered with arctan(Q/I),
and then we can divide by kp. I haven’t tried implementing this, but I’ve heard from peers
that the arctangent may sometimes introduce numeric instabilities using this method.

• (20) can be approximated as (21) with the assumption that |φ| � 1. This is called the narrow
band approximation. When demodulating, we only need recover the Q-component, and
don’t require the use of an arctangent function, so this is simpler than the second method.

For phase coherence, an additional pilot tone term Ap cos(2πfct) should be added. This is re-
quired for the latter two methods (I-Q demodulation), but is not required for the former (envelope
detection).

PM-signal generation can be implemented as an I-Q demodulation (one of the two latter equation
forms); the last form is easiest to implement, but only can be used when the modulation index is
small. However, there are ways to use this method even with a wide band signal, namely by
frequency division and multiplication.
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Unlike amplitude-modulated signals, angle-modulated signals (PM and FM) take up infinite
bandwidth because of their continuous frequency (phase) deviations. This can be seen mathemat-
ically as the Fourier transform of angle-modulated signals involves the Bessel functions, and thus
have infinite bandwidth. However, Carson’s rule states that the majority of an angle-modulated
signal’s power (≥ 98%) lies in a bandwidth of:

Wcarson = 2(β + 1)W (23)

where β = βp for phase modulation and β = βf for frequency modulation.

2.3.2 Analysis

When assuming the narrow band approximation, we can estimate that both Ac+Ap is the amplitude
of the in-phase carrier, and Acβp is the amplitude of the quadrature carrier. Thus:

Pu =
(Ac +Ap)

2

2
+
A2
cβ

2
pPm

2
(24)

Since the modulated signal is narrow band (by assumption), then βp is small and the first term
dominates. I defer the derivation of the noise power and SNR to the class notes, or section 5.3 of
[2].

Pm = k2pPm (25)

Pn =
2WN0

A2
c

(26)

SNR =
k2pA

2
c

2

Pm
N0W

=
A2
c

2

(
βp

max |m(t)|

)2
Pm
N0W

(27)

Again, the calculation for noise power was derived in the analog domain. See 10 for details about
the digital domain calculation.

2.3.3 Implementation details

The modulation is fairly straightforward. We calculate the phase function, and add this phase
pointwise to the carrier signal. (In practice, it would be easier to implement by mixing a narrow
band signal with the carrier frequency using the narrow band approximation, but this is MATLAB.)
A pilot tone is added to the signal.
Notes on demodulation:

• We use the narrow band approximation here in order to simplify the calculation. This means
an I-Q demodulation (the third PM demodulation method described) by only mixing with
the quadrature carrier.

• Similar to in SSB, we generated a pilot tone in the modulation “for show”: this would be neces-
sary for coherence with the I-Q demodulation, but actually extracting this tone in MATLAB
with a realistic filter would be hard. Thus, again we don’t use this pilot tone in the demodu-
lator, but we generate a quadrature carrier (sine wave) and assume coherence.
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1 % modulates a signal using the PM scheme
2 % params:
3 % f_c = frequency of carrier
4 % A_c = amplitude of carrier
5 % sig_m = message signal
6 % k = k_p, phase deviation coefficient
7 % f_s_m = downsampled sampling rate
8 % f_s_c = updampled sampling rate
9 % returns:

10 % sig_c = PM-modulated signal at upsampled rate
11 function sig_c = pm_mod(f_c, A_c, sig_m, k, f_s_m, f_s_c)
12 duration = length(sig_m) / f_s_m;
13 t_m = linspace(0, duration, length(sig_m));
14 t_c = linspace(0, duration, f_s_c * duration);
15

16 % upsample sig_m, multiply by k to get phase
17 sig_phi = k * interp1(t_m, sig_m, t_c);
18

19 % generate phase-modulated signal w/ pilot tone
20 A_p = 1;
21 sig_c = A_c * cos(2 * pi * f_c * t_c + sig_phi) ...
22 + A_p * cos(2 * pi * f_c * t_c);
23 end

Listing 5: PM modulation

• As with the previous modulation schemes, a first-order LPF and HPF were used to filter the
components. The LPF was applied twice to get rid of some extra noise at higher frequencies.

• To regain the original amplitude, we multiply by a factor of 2. This can be explained by the
power losses in the demodulation. Firstly, half of the power should be in the I component,
which we completely disregard. Another half of the power is lost when mixing with the carrier.
Losing power by a factor of 4 means an amplitude attenuation by a factor of 2.
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1 % demodulates a signal modulated using the PM scheme
2 % params:
3 % f_c = frequency of carrier
4 % A_c = amplitude of carrier
5 % sig_c = PM-modulated signal
6 % k = k_p, phase deviation coefficient
7 % f_s_m = downsampled sampling rate
8 % f_s_c = upsampled sampling rate
9 % tau = LPF cutoff frequency

10 % returns:
11 % sig_m = demodulated signal at downsampled rate
12 function sig_m = pm_demod(f_c, A_c, sig_c, k, f_s_m, f_s_c, tau)
13 duration = length(sig_c) / f_s_c;
14 t_c = linspace(0, duration, f_s_c * duration);
15 t_m = linspace(0, duration, f_s_m * duration);
16

17 % mix with sine; negative because quadrature component is negative
18 sig_c = -sig_c .* sin(2 * pi * f_c * t_c);
19

20 % LPF and HPF
21 wd = linspace(-pi, pi, length(sig_c));
22 f_c = wd * f_s_c / (2 * pi);
23 hpf = (1 - 20*f_c.^-1*1j).^-1; % HPF
24 lpf = (1 + f_c/tau*1j).^-1; % LPF frequency response
25 ft_c = fftshift(fft(sig_c)); % freq. domain rectified signal
26 ft_c = lpf .^ 2 .* hpf .* ft_c; % apply filter in freq. domain
27 sig_c = ifft(ifftshift(ft_c));
28

29 % downsample
30 sig_m = real(interp1(t_c, sig_c, t_m) / (k * A_c));
31

32 % restore amplitude
33 sig_m = sig_m * 2;
34 end

Listing 6: PM demodulation
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2.4 FM Modulation
2.4.1 Overview

Frequency modulation involves encoding the message into the frequency of the carrier signal. This
first requires the concept of instantaneous frequency, which can be defined as a function of the
phase φ:

finst =
1

2π

dφ

dt
(28)

Now, say that we wish to encode the message signal as a in the frequency, i.e.:

finst = kfm(t) (29)

Here, kf is the frequency deviation coefficient from the carrier (I.e., if the message has an amplitude
of a, then the instantaneous frequency of the modulated signal will be fc + a at that moment;
intuitively, kf max |m(t)| = ∆fmax) Then we can express the phase as a function of the message
signal:

φ(t) = 2πkf

∫ t

−∞
m(t) dt (30)

Then, we can apply the same principles behind PM to modulate this phase. This generates the
modulated signal:

ufm(t) = Ac cos

(
2πfct+ 2πkf

∫ t

−∞
m(t) dt

)
(31)

Similar to PM, we can define a modulation factor kf that indicates the phase shift:

βf :=
kf max |m(t)|

W
=

∆fmax
fm,max

(32)

where W is the bandwidth of m(t) (i.e., the highest frequency of the baseband signal m(t)). This
can intuitively be interpreted to mean the bandwidth efficiency of a modulated signal: a higher
βf indicates a higher carrier modulation for the same input bandwidth (and thus lower bandwidth
efficiency). βf can also be roughly interpreted as the maximum phase deviation (just like βp for
PM), since, for the pure tone mpure(t) = cos(2πf0t) (max |m(t)| = 1, β = kf/f0):

u(t) = Ac cos

(
2πfct+ 2πkp

∫ ∞
−∞

cos(2πf0t) dt

)
(33)

= Ac cos

(
2πfct+

2πkp
2πf0

sin(2πf0t)

)
= Ac cos (2πfct+ βf sin(2πf0t))

Clearly, βf = ∆φmax in this case.
Demodulation of an FM-modulated signal can be performed identically to a PM demodulator,

except that it would require an additional division by 2πkf at the conclusion and a differentiation
stage. Note that the first demodulation scheme involves a differentiation, envelope detection, and
an integration stage; if we add another differentiation stage at the end of this, it would cancel
out the integration stage and make it a simple two-step process very similar to conventional AM.
Since differentiation and envelope detection are both easy to implement in hardware, this makes
conventional AM and FM the most commonly implemented modulation schemes.
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2.4.2 Analysis

As with PM, I defer the derivation of the noise power and SNR to the class notes, or section 5.3 of
[2].

Pm = k2fPm (34)

Pn =
2W 3N0

3A2
c

(35)

SNR =
3k2fA

2
c

2W 2

Pm
N0W

=
3A2

c

2

(
βf

max |m(t)|

)2
Pm
N0W

(36)

Again, the calculation for noise power was derived in the analog domain. See 10 for details about
the digital domain calculation. What is a little confusing is that the bandwidth W in the first term
in (36) can be in analog units (it should be the same value used when defining kf ), whereas the W
in the second term indicates the cutoff frequency and should be in digital radian units when working
in a sampled space. The equivalent expression using βf is a little nicer because βf is invariant to
the domain (digital or analog), and so it hides this ugliness.

2.4.3 Implementation details

This uses the cheap method involving differentiation and conventional AM demodulation (envelope
detection). The modulation implementation is pretty straightforward. The only design decision
was to use cumsum as a simple running integral.
Notes about demodulation:

• Differentiation is performed in the time domain using a difference equation approximation. It
is padded with a single zero to maintain the length.

• Like in the conventional AM case, half-wave rectification is arbitrarily chosen (as opposed to
full-wave rectification).

• A first-order LPF and HPF were used to filter the circuit. As in the previous examples, the
LPF is primarily to filter out the double frequency carrier and the DC components created
by the carrier mixing.

• The LPF was arbitrarily applied multiple times, similar to the SSB case, in order to reduce
additional noise at higher frequencies.
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1 % modulates a signal using the FM scheme
2 % params:
3 % f_c = frequency of carrier
4 % A_c = amplitude of carrier
5 % sig_m = message signal
6 % k = k_f, frequency deviation coefficient
7 % f_s_m = downsampled sampling rate
8 % f_s_c = updampled sampling rate
9 % returns:

10 % sig_c = FM-modulated signal at upsampled rate
11 function sig_c = fm_mod(f_c, A_c, sig_m, k, f_s_m, f_s_c)
12 duration = length(sig_m) / f_s_m;
13 t_m = linspace(0, duration, length(sig_m));
14 t_c = linspace(0, duration, f_s_c * duration);
15

16 % upsample sig_m, multiply by k, integrate and multiply by 2pi to get
17 % phase (in rad)
18 sig_phi = 2 * pi * k * interp1(t_m, cumsum(sig_m) / f_s_m, t_c);
19

20 % generate phase-modulated signal (since FM is basically PM)
21 sig_c = A_c * cos(2 * pi * f_c * t_c + sig_phi);
22 end

Listing 7: FM modulation
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1 % demodulates a signal modulated using the FM scheme
2 % params:
3 % sig_m = message signal
4 % A_c = amplitude of carrier
5 % f_s_m = downsampled sampling rate
6 % f_s_c = updampled sampling rate
7 % k = k_f, frequency deviation coefficient
8 % tau = LPF cutoff frequency
9 % returns:

10 % sig_m = FM-demodulated signal at downsampled rate
11 function sig_m = fm_demod(sig_c, A_c, f_s_m, f_s_c, k, tau)
12 % differentiate (same as multiplying by jw in freq domain)
13 sig_c = [(diff(sig_c) * f_s_c) 0];
14

15 % rectify signal
16 sig_c(sig_c < 0) = 0;
17

18 % lpf and hpf
19 wd = linspace(-pi, pi, length(sig_c));
20 f_c = wd * f_s_c / (2 * pi);
21 hpf = (1 - 20*f_c.^-1*1j).^-1; % HPF
22 lpf = (1 + f_c/tau*1j).^-1; % LPF frequency response
23 ft_c = fftshift(fft(sig_c)); % freq. domain rectified signal
24

25 % apply LPF multiple times in a row to completely get rid of carrier
26 % frequency
27 ft_c = lpf .^ 2 .* hpf .* ft_c; % apply filter in freq. domain
28 sig_c = ifft(ifftshift(ft_c));
29

30 % factor of 3.4 found empirically (similar to conventional AM demod)
31 sig_c = 3.4 * real(sig_c) / (2 * pi * k * A_c);
32

33 % downsample sig_c
34 duration = length(sig_c) / f_s_c;
35 t_m = linspace(0, duration, f_s_m * duration);
36 t_c = linspace(0, duration, length(sig_c));
37 sig_m = interp1(t_c, sig_c, t_m);
38 end

Listing 8: FM demodulation
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2.5 Modulation schemes comparison
See Table 1 for a general comparison between modulation schemes.

CONV SSB FM

PM PM more robust to noise
CONV cheaper

Similar I-Q demod scheme
SSB more bandwidth efficient

PM more robust to noise

FM cheaper
FM more common

FM FM more robust to noise
Similar cheap demod scheme

FM cheaper
SSB more bandwidth efficient

PM more robust to noise

SSB
CONV cheaper

SSB use half bandwidth
SSB transmits double signal power

Table 1: Comparison of modulation schemes

Power Conventional AM uses half the power of SSB. Angle-modulation schemes are usually more
power-efficient because they can increase β to increase SNR instead of increasing Ac.

Bandwidth Conventional AM uses double the bandwidth of SSB. Angle-modulation schemes are
usually less bandwidth-efficient because they use a larger bandwidth (larger β) to increase
SNR without increasing Ac.

SNR (and modulation index) In all of the schemes, increasing the carrier amplitude increases
the SNR (but is less power efficient). In SSB AM, this is the only way to affect the SNR
(assuming the message power is fixed). In conventional AM, increasing a also increases the
SNR, but this also decreases power efficiency, and it is limited by the fact that 0 ≤ a ≤ 1 so
that no clipping occurs at demodulation. In the angle modulation schemes, in addition to the
option of increasing the carrier amplitude, increasing the modulation index β increases SNR
at no power cost, and is not as limited as a is; however, this uses a larger bandwidth.

2.6 “Fairly” comparing different modulation schemes
The “design problem” of this assignment is that there are multiple parameters to vary, and most
do not affect the noiseless demodulated output (but affect the SNR when noise is added to the
modulated signal). For example, the demodulated signal of a no-noise modulated signal is invariant
to increases in Ac, but the SNR is directly related. In other words, if we set the criterion for choosing
parameters to be such that the demodulated signal has the same power, there are infinitely-many
possible combinations of parameters to choose from. This can be seen to make the estimated SNRs
exactly the same in the simulations below (see Table 5), and the experimental SNR values are very
close.

The assignment asks us to “ensure that the signal power will be equal at the output in each
[modulated] scheme.” This means that the criterion for choosing parameters is such that the power
of the component of the modulated signal encoding the message is equal between each modulated
scheme. This is easily done with conventional AM and SSB AM, where the power of the message
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signal component Py are given by (derived in their respective sections):

Py,conv =
A2
ca

2

2
Pm (37)

Py,ssb = A2
cPm (38)

In this case, the modulation index a conventional AM is arbitrarily set to 0.5 (which allows us to
double it later without worrying about clipping), and the carrier amplitude Ac is arbitrarily set to
4. To match this, in the SSB case Ac,ssb ← Ac,conv/

√
8.

For the angle-modulated cases, I am not sure how to solve it because of the complex nature of
the Fourier transform and PSD (i.e., with the Bessel functions). Thus we give up on this idea of
fair comparison and just give the FM and PM the same Ac as the conventional AM case.

The assumption that signal power will be equal in each modulation scheme is unfair because
this is (probably) not what happens in the real world: different modulation schemes probably get
transmitted at vastly different signal powers and different transmitted powers. In other words, I give
up on the idea of directly trying to compare the different modulation schemes to each other with
some absolute measure (e.g., comparing their SNRs at some given noise variance level to determine
which is overall more resistant to noise), but rather observe the general trends w.r.t. changes in
their parameters.
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3 Results

CONV SSB PM FM
modulation index a = 0.5 – kp = 0.1 kf = 10W ≈ 60650Hz
carrier amplitude Ac 4

√
2 4 4

carrier frequency fc 500000 500000 500000 400000
sampling rate of modulated signal fs,c 2000000 2000000 5000000 5000000
USSB/LSSB – LSSB – –
noise variance (when varying modulation index) 1 – 1 0.5

Table 2: Parameters for modulation schemes

CONV SSB PM FM

Total transmitted power
Experimental
Theoretical
% error

8.1044
8.1042
0.00%

0.6031
0.6044
0.22%

12.4990
12.5000
0.01%

8.000
8.000
0.00%

Demodulated power
Experimental
Theoretical
% error

0.0546
0.0522
4.60%

0.0513
0.0522
1.72%

0.0498
0.0522
4.60%

0.0553
0.0522
5.94%

Table 3: Expected vs. theoretical power of modulated (transmitted) and demodulated signals

PM FM
% power of signal in Carson’s bandwidth 100.00% 100.00%

Table 4: Percent power of signal in Carson’s bandwidth for angle-modulated signals
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σ = 0.1 σ = 0.5 σ = 1

CONV SNR (dB) Experimental 22.52 15.12 9.83
Theoretical 31.99 (28.98†) 18.01 (15.00†) 11.99 (8.98†)

SSB SNR (dB) Experimental 21.40 13.55 8.11
Theoretical 31.99 (28.98†) 18.01 (15.00†) 11.99 (8.98†)

PM SNR (dB) Experimental 20.93 9.66 3.79
Theoretical 21.99 8.01 1.99

FM SNR (dB) Experimental 19.46 9.97 2.32
Theoretical 66.76 52.78 47.76

Table 5: Effect of varying noise variance on SNR. †using an extra scaling factor of 2

Modulation index (a, βp, or βf )
0.5*original original 2*original

CONV SNR (dB) Experimental 4.06 9.83 14.79
Theoretical 5.97 (2.96†) 11.99 (8.98†) 18.01 (15.00†)

PM SNR (dB) Experimental -2.26 3.72 9.64
Theoretical -4.03 1.98 8.01

FM SNR (dB) Experimental 3.43 9.97 13.54
Theoretical 45.93 51.95 57.97

Table 6: Effect of varying modulation index on SNR. †using an extra scaling factor of 2
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Figure 1: Original message signal



Figure 2: Conventional AM modulated and demodulated signals



Figure 3: SSB AM modulated and demodulated signals



Figure 4: PM modulated and demodulated signals



Figure 5: FM modulated and demodulated signals



Figure 6: Close-up comparison of conventional AM baseband and modulated spectra



Figure 7: Close-up comparison of SSB AM baseband and modulated spectra



Figure 8: Demonstration of Carson’s rule



Figure 9: Effect of varying noise variance on conventional AM



Figure 10: Effect of varying noise variance on SSB AM



Figure 11: Effect of varying noise variance on PM



Figure 12: Effect of varying noise variance on FM



Figure 13: Effect of varying modulation index on conventional AM



Figure 14: Effect of varying modulation index on PM



Figure 15: Effect of varying modulation index on FM



Figure 16: Increased distortion with higher frequencies with FM (fc = 1MHz, fs,sc = 10MHz)



4 Discussion

4.1 The message signal
The original message signal was scaled to have unity maximum amplitude, and it has a bandwidth
(calculated using obw) of 6605Hz. Figure 1 is a plot of this signal and its Fourier transform.

4.2 Verification of the modulation schemes
The first order of business was to verify that each modulation and demodulation scheme works.
The parameters for each of the modulation schemes is shown in Table 2. The modulated and
demodulated signals were plotted in the time and frequency domains in Figures 2 (conventional
AM), 3 (SSB AM), 4 (PM), and 5 (FM).

Also, the total transmitted power of the modulated signals, and the power of the demodulated
signals, for each scheme are given in Table 3. It is clear from this table that the values match the
theoretical values. (However, this doesn’t mean much in the case of the demodulated conventional
AM and demodulated FM cases, because there was an empirically-determined scalar multiplier in
the demodulator used to restore the original amplitude.)

The outputs from each scheme are clearly audibly recognizable. Conventional AM and FM both
have a very slight staticky sound, which is probably due to rectification noise.

4.2.1 Conventional AM

It is clear from the modulated signal plotted in the time domain that Ac = 4, and the message
signal is clearly visible as the envelope of the modulated signal. In the Fourier transform of the
modulated signal, we can see that there are two spikes at the carrier frequency as expected. The
demodulated signal looks comparable to the original signal, as well as its Fourier transform; the
only difference is that the DC offset is explicitly zero (from the demodulation function), so there is
a (nonconsequential) negative spike at f = 0.

In addition, Figure 6 is a plot of the Fourier transform of the modulated signal shown zoomed
horizontally and centered horizontally at f = fc and compared to the Fourier transform of the
baseband message signal. This clearly demonstrates the function of mixing with a pure tone at the
carrier frequency.

4.2.2 SSB AM

Similar to conventional AM, the envelope of the message signal is clearly visible in the carrier. The
Fourier transform clearly shows a difference between the lower and upper sidebands, as expected.
The output signal looks similar to the message signal in both time and frequency domain.

Similarly to conventional AM, Figure 7 is a plot of the Fourier transform of the modulate
signal shown zoomed horizontally and centered horizontally at f = fc and compared to the Fourier
transform of the baseband message signal. It is clear that all of the power is stored in the lower
side band, as expected.

4.2.3 PM

As expected, the modulated signal is hard to see: the amplitude is more or less constant, with only
a small visible distortion. The Fourier transform of the modulated signal shows narrow peaks at
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the carrier frequency; they aren’t quite as narrow as in the AM cases, but since βp = kp = 0.1 is
small, they are fairly narrow. The demodulated output looks as expected.

4.2.4 FM

Much of the same arguments as PM apply. The main difference is that the Fourier transform of
the modulated signal looks messier; this is because βp = 10 is larger, so more bandwidth is used in
this case.

4.3 Verifying Carson’s rule for angle modulation
To do this, I simply overlaid a plot of the Carson bandwidth (shaded in green) on top of the plots
of the modulated PM and FM signals in the frequency domain in Figure 8. These were calculated
using the Carson bandwidth formula:

Wcarson = 2(β + 1)W

It is visually apparent that most of the power lies in these bounds; to further verify this, I used
the following snippet to experimentally calculate the amount of power in both Carson bandwidths
(this is for PM, the result for FM is analogous):

1 bandpower(sig_pm_modulated, f_s_c_pm, ...
2 [f_c_pm - (beta_p + 1) * W], f_c_pm + (beta_p + 1) * W) ...
3 / bandpower(sig_pm_modulated)

As shown in Table 4, both calculations give approximately 100% of the power is in the Carson
bandwidth.

4.4 Effect of varying noise variance on SNR
First, to review the SNR results from 2:

SNRconv =
a2A2

c

2

Pm
N0W

SNRssb = A2
c

Pm
N0W

SNRpm =
A2
c

2

(
βp

max |m(t)|

)2
Pm
N0W

SNRfm =
3A2

c

2

(
βf

max |m(t)|

)2
Pm
N0W

A few things to note:

• As shown in 10, the noise power N0W in all of these analog domain equations should be
replaced with N0W/fs for use in the digital (sampled) domain.

• In the case of a fixed message signal, Pm and W are fixed.
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• a, Ac, βp, βf , and (1/
√
N0 = 1

σ
√
2
) are all related to the SNR by a quadratic relationship.

Thus, changing any of these should have the same result on the SNR (albeit different results
on power, bandwidth, clipping, etc.).

Three standard deviations were chosen (arbitrarily) for the noise process: 0.1, 0.5, and 1. The
overall results for this section are summarized in Table 5. Plots for the modulation schemes can be
found at Figures 9 (conventional AM), 10 (SSB AM), 11 (PM), 12 (FM).

It is visually evident from the plots that increasing the variance of the noise decreases the SNR,
in all cases. For conventional AM, SSB AM, and PM, the experimental and the theoretical SNRs
agreed fairly well.

Due to the nature of the parameter setup for conventional and SSB AM, which were set up so
that the signal power in the modulated signal was the same, incidentally the calculated SNRs were
also exactly the same. Experimentally, the SNRs between these two schemes turned out pretty
close.

For the AM schemes, the theoretical SNR is systematically higher than the experimental SNR.
Dan Kim suggested that dividing the theoretical SNR by a factor of 2 (providing a uniform ≈ −3dB
shift) seems to make the experimental and theoretical results significantly closer. While the error
doesn’t seem to be a simple constant shift, the fact that there’s an approximately constant decibel
shift means that either the experimental noise power is systematically high or the experimental
signal power is systematically low. I was debugging by probing the noise and signal powers at
several points through the demodulation function, and found that the signal power was always
more or less correct, so I suspect that the noise power was incorrect. I’m not sure where this error
comes from, or if it’s a constant, but here are a few possibilities:

• inherent quantization error

• rectification noise (in the case of conventional AM)

• half-wave rectification, which cuts the signal power in half (in the case of conventional AM)

• the LPF or HPF may cause the retained noise power to be disproportionally higher (w.r.t.
signal power) than before filtering

The FM scheme experimental SNR was far from the theoretical value. Theoretically, the modulation
index is large and the SNR should be very high. My guess is that there are many sources of numerical
and other inherent error, e.g.:

• inherent quantization error

• numerical integration using cumsum during modulation

• numerical differentiation using diff during demodulation

• half-wave rectification noise during demodulation

• low-pass and high-pass filtering may cause distortions in the ratio of retained noise power to
signal power
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4.5 Effect of varying modulation index on SNR
The same notes from the previous section apply: decreasing σ by a factor of 2 or increasing modu-
lation factor by a factor of 2 (ignoring clipping or other distortion) should cause the same change
in SNR. In our specific case, having σ = 0.5, a = 0.5 in the conventional AM case would have the
same SNR as σ = 1, a = 1. Indeed, the theoretical calculation produces the same number: 15.00
(with the 2 correction factor).

The overall results for this section are summarized in Table 6. Plots for the modulation schemes
can be found at Figures 13 (conventional AM), 14 (PM), and 15 (FM).

Much of the analysis is exactly the same as in the previous section: the conventional AM, SSB
AM, and PM had good agreement between experimental and theoretical SNRs. There was a similar
systematic offset between the theoretical and experimental values that could be improved by adding
the factor of 2.

4.6 Effect of higher carrier and sampling frequencies
I originally had a carrier frequency of 1MHz and a sampling frequency of 10MHz, but this caused
a lot of distortion, which can be seen in Figure 16. It seems that higher frequencies can cause
more errors with quantization errors than it might help by improving resolution. However, for the
other modulation methods, I didn’t have this problem. Therefore, my FM carrier and sampling
frequencies are fairly low.
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5 Conclusions
A reasonable implementation of multiple analog modulation schemes – conventional AM, SSB
AM, FM, and PM – were implemented and simulated in MATLAB. Their operations were verified
by a number of methods, including listening to the demodulated signal by ear, examining the
modulated signal, checking the power of the modulated and demodulated signals, and comparing
the demodulated signal to the original message signal.

These modulation and demodulation functions were used to empirically verify some of the
theory. For example, the Carson bandwidth was loosely verified by a visual check and an estimated
calculation. The effect of varying the variance of the AWGN noise, and of varying the modulation
index, on the SNR was also explored and compared to theoretical values. Most of the calculated
SNR values were fairly close to the theoretical values (i.e., most of the errors were less than 10dB);
however, the empirical SNRs were systematically lower than the theoretical values. Most of the
values were fairly close, but unfortunately I was unable to find a way to make the experimental
SNR values for FM match the theoretical values.

These errors may be due to some combination of implementation errors, quantization/rounding
errors, and inherent noise in the systems (especially in filtering, rectification, and numerical inte-
gration/differentiation stages). More time and effort would be needed to investigate these errors.
Despite these errors, the general trends in SNR as a function of the changes in input parameters
were correct.
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8 Appendix I: Audio
The original audio message signal used throughout this report is a speech sample downloaded
from Olympus Professional Dictation Support [3]. The audio is truncated to reduce memory and
processor strain. The message is also normalized so that its maximum amplitude is 1, which makes
calculating modulation indices simpler.

Sampling rate 16kHz
Bandwidth 6.61kHz
Samples 20000 (after truncation)
Duration 1.25s (after truncation)
Signal power 0.0522
max |m(t)| 1

Table 7: Audio message signal statistics

1 %% Load audio and preprocess
2

3 % audio details
4 audio_filename = 'welcome.wav';
5

6 % truncate to limit memory usage and processing time
7 audio_samples = 20000;
8

9 % loads the message and the sampling rate of the message
10 [sig_m, f_s_m] = audioread(audio_filename);
11 sig_m = sig_m(1:audio_samples)';
12

13 % make maximum magnitude 1 to avoid problems with conventional AM
14 sig_m = sig_m / max(abs(sig_m));
15

16 % get bandwidth
17 W = obw(sig_m, f_s_m);
18

19 % get signal power
20 P_m = bandpower(sig_m);

Listing 9: Loading and preprocessing the audio signal

48



9 Appendix II: Auxiliary functions

9.1 Estimating signal power in MATLAB
In MATLAB, we only have discrete-time signals, with N discrete samples, sampling frequency Fs,
and duration T = N/Fs. We can estimate the power of a signal numerically using the root-mean-
squared function (squared) rms or bandpower functions, where rms(signal)^2=bandpower(signal).
To show the equivalence of this mean-squared function to the power of a discrete signal:

rms2{x[n]} =
1

N

∑
x2[n] =

1

TFs

∑
x2[n] =

1

T

∑
x2[n]

1

Fs
(39)

=
1

T

∑
x2[n]δt ≈ 1

T

∫
x2(t) dt = Px

Thus, the bandpower function was used throughout the program to estimate signal power.

9.2 Hilbert transform
The Hilbert transform is the LTI, norm-preserving magic sauce behind SSB. In layman’s terms,
this turns the negative part of the baseband signal into the quadrature part of the signal, which
allows for packing the same signal as DSB AM into half of the bandwidth.

1 % hilbert transform of a signal; copied from earlier psets; for SSB AM
2 % params:
3 % sig_x = input signal
4 % returns:
5 % res = hilbert transform of sig_x
6 function res = hilbert_transform(sig_x)
7 ft_x = fft(sig_x);
8 len_x = length(sig_x);
9

10 % get signum of frequency; +1 for 0 to pi, -1 for -pi to 0
11 sgn = [ones(1, floor(len_x/2)), -1*ones(1, ceil(len_x/2))];
12 res = ifft(-1j * sgn .* ft_x);
13 end

Listing 10: Hilbert transform function

9.3 Lowpass signal
This function is used to lowpass signals by multiplying by the frequency response of a first-order
LPF. Used for filtering out noise above the audible range, but can be used with any cutoff frequency.
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1 % lowpass: set tau to upper range of audible range
2 function sig_c = lowpass_audible(sig, f_s, tau)
3 wd = linspace(-pi, pi, length(sig));
4 f = wd * f_s / (2 * pi);
5 ft = fftshift(fft(sig));
6

7 % first-order LPF with cutoff frequency at tau
8 lpf = (1 + f/tau*1j).^-1;
9 ft = lpf .* ft;

10

11 sig_c = real(ifft(ifftshift(ft)));
12 end

Listing 11: Lowpass function

9.4 Fourier transform plotter
This function provides the frequency axis and Fourier transform of a signal.

1 % helper function to plot the fourier transform of a signal
2 % params:
3 % x = signal
4 % f_s = sampling rate
5 % returns:
6 % f = frequency axis
7 % ft = fourier transform
8 function [f, ft] = plot_ft(sig, f_s)
9 wd = linspace(-pi, pi, length(sig));

10 f = wd * f_s / (2 * pi);
11 ft = abs(fftshift(fft(sig)) / f_s);
12 end

Listing 12: Fourier transform plotting function

9.5 Saving figures to PDFs
This function saves figures to PDFs, with arbitrary page dimensions.
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1 % helper function for printing to PDFs
2 function fig_save(fig_title, paper_size)
3 global pset_name;
4 pset_name = 'ece300_proj1';
5

6 set(gcf(), ...
7 'Units', 'centimeters', ...
8 'Position', [0 0 paper_size], ...
9 'InnerPosition', [0 0 paper_size], ...

10 'OuterPosition', [0 0 paper_size], ...
11 'PaperPositionMode', 'auto');
12 exportgraphics(gcf(), ...
13 sprintf('%s_fig_%s.png', pset_name, fig_title), ...
14 'ContentType', 'image');
15 end

Listing 13: Figure saver helper function
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10 Appendix III: Calculating noise power in the digital do-
main

An AWGN random process N(t) with variance σ2 has the following autocorrelation function:

RN,dig[n] = σ2δ[n] (40)

By the Weiner-Khinchin theorem, the PSD (in digital radians) of the AWGN noise is given by the
DFT of the autocorrelation function:

SN,dig(ω) = F{RN [n]}(ω) =
σ2

2π
(41)

The total power of the noise process before filtering is the integral of the PSD over its domain:

PN,dig =

∫ π

−π

σ2

2π
dω = σ2 (42)

This can be confirmed empirically by finding the bandpower of an arbitrary AWGN noise signal.
E.g., when σ2 = 4 bandpower(2 * randn(1, 1000000)) outputs 4. When we want to find the
power of the noise in the baseband (demodulated) signal, then we assume a perfect filter with digital
cutoff frequency ωcut (i.e., this would be set to the bandwidth of the message signal). Then we
have a rectangular pulse PSD centered at ω = 0, with height σ2/(2π) and width 2ωcut. The noise
power at baseband is the integral (area) under this rectangle, i.e.:

PN,bb,dig =

∫ π

−π
(rect{−ωcut,ωcut})(SN (ω)) dω =

σ2

2π
(2ωcut) (43)

Making the conventional substitution for the noise power, N0 = 2σ2:

PN,bb,dig =
N0

2π
ωcut =

N0

2π

2πfcut
fs

= N0
fcut
fs

(44)

where fs is the sampling frequency. The final expression here is the most intuitive: it is the product
of the noise power with the ratio of the cutoff frequency to the sampling frequency. This contrasts
with the analog case, which was covered in class:

RN,ana(t) = σ2δ(n) (45)

SN,ana(f) = σ2 (46)

PN,ana =

∫ ∞
−∞

SN,ana(f) df =∞ (47)

PN,bb,ana =

∫ fcut

−fcut

SN,ana(f) df = N0fcut (48)

(If analog angular frequency was used instead of analog linear frequency, then there would also be
the additional factor of 1/(2π).) Both cases involve clipping a flat noise PSD to that within the
bandwidth specified by the cutoff frequency.

In summary: a noise power (i.e., in SNR equations) of N0fcut (or, equivalently,
N0W ) in the analog domain should be replaced with N0fcut/fs = N0ωcut/(2π).
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Note that most of the demodulation methods involve a LPF at the upsampled rate (i.e., the
sampling rate used to sample the modulated signal), and the signal is passed through an additional
LPF at the downsampled rate (i.e., the sampling rate used for the baseband audio) to filter out
inaudible high-frequency noise. Note that downsampling changes the magnitude of the PSD.

11 Appendix IV: Source code
The core functions have already been defined. Here is the rest of the code used to produce the plots
and results in this document.

1 close all; clear; clc;
2 set(0, 'defaultTextInterpreter', 'latex');
3
4 %% Project details
5 global pset_name;
6 pset_name = 'ece300_proj1';
7
8 % audio details
9 audio_filename = 'welcome.wav';

10 audio_samples = 20000;
11
12 %% Load audio
13
14 % loads y, Fs
15 [sig_m, f_s_m] = audioread(audio_filename);
16 sig_m = sig_m(1:audio_samples)';
17
18 % make maximum magnitude 1 to avoid problems with conventional AM
19 sig_m = sig_m / max(abs(sig_m));
20
21 % plot audio
22 figure('visible', 'off');
23 tiledlayout(1, 2, 'TileSpacing', 'Compact', 'Padding', 'Compact');
24
25 duration = length(sig_m) / f_s_m;
26 t_m = linspace(0, duration, length(sig_m));
27
28 nexttile();
29 plot(t_m, sig_m);
30 title('Original signal');
31 ylabel('$m(t)$');
32 xlabel('$t$');
33 xlim([0, duration]);
34 ylim([-1.2, 1.2]);
35
36 [f, ft] = plot_ft(sig_m, f_s_m);
37 nexttile();
38 semilogy(f, ft);
39 title('Magnitude of original signal Fourier transform');
40 ylabel('$|M(f)|$');
41 xlabel('$f$');
42 ylim([10e-8, 10e-2]);
43
44 fig_save('sig_m', [80 20]);
45
46 % get bandwidth
47 W = obw(sig_m, f_s_m);
48
49 % get signal power
50 P_m = bandpower(sig_m);
51
52 % write original signal to filesig_mod
53 audiowrite('original.wav', sig_m, f_s_m);
54
55 %% Modulation configuration
56
57 % conventional AM
58 a_conv = 0.5;
59 A_c_conv = 4;
60 f_c_conv = 500000;
61 f_s_c_conv = 2000000;
62
63 % SSB AM
64 f_c_ssb = 500000;
65 A_c_ssb = A_c_conv / sqrt(8);
66 f_s_c_ssb = 2000000;
67 is_ussb = false;
68
69 % PM
70 f_c_pm = 500000;

71 A_c_pm = A_c_conv;
72 f_s_c_pm = 5000000;
73 k_p = 0.1;
74
75 % FM
76 f_c_fm = 1e6; %400000;
77 A_c_fm = A_c_conv;
78 f_s_c_fm = 1e7; %5000000;
79 k_f = 10 * W;
80
81 % for when viewing the effect of varying noise std.
82 noise_stds = [0 0.1 0.5 1];
83
84 % for when viewing the effect of varying modulation index
85 noise_std_conv = 1;
86 noise_std_fm = 0.5;
87 noise_std_pm = 1;
88
89 % for storing the theoretical snrs
90 var_noise_theo = zeros(4,4);
91 var_noise_emp = zeros(4,4);
92 var_mod_ind_theo = zeros(3,3);
93 var_mod_ind_emp = zeros(3, 3);
94
95 %% conventional AM modulation
96 sig_conv_modded = conv_mod(f_c_conv, A_c_conv, a_conv, ...
97 sig_m, f_s_m, f_s_c_conv);
98 sig_conv_demodded = conv_demod(sig_conv_modded, A_c_conv, ...
99 a_conv, f_s_m, f_s_c_conv, W);

100 plot_modded_demodded(sig_conv_modded, sig_conv_demodded, ...
101 f_s_m, f_s_c_conv, 'conv');
102 audiowrite('conv_demodded.wav', sig_conv_demodded, f_s_m);
103
104 %% SSB AM modulation
105 sig_ssb_modded = ssb_mod(f_c_ssb, A_c_ssb, sig_m, f_s_m, f_s_c_ssb, ...
106 is_ussb);
107 sig_ssb_demodded = ssb_demod(sig_ssb_modded, f_c_ssb, A_c_ssb, ...
108 f_s_m, f_s_c_ssb, W);
109 plot_modded_demodded(sig_ssb_modded, sig_ssb_demodded, f_s_m, ...
110 f_s_c_ssb, 'ssb');
111 audiowrite('ssb_demodded.wav', sig_ssb_demodded, f_s_m);
112
113 %% PM Modulation
114 sig_pm_modded = pm_mod(f_c_pm, A_c_pm, sig_m, k_p, f_s_m, f_s_c_pm);
115 sig_pm_demodded = pm_demod(f_c_pm, A_c_pm, sig_pm_modded, k_p, ...
116 f_s_m, f_s_c_pm, W);
117 plot_modded_demodded(sig_pm_modded, sig_pm_demodded, f_s_m, ...
118 f_s_c_pm, 'pm');
119 audiowrite('sig_pm_demodded.wav', sig_pm_demodded, f_s_m);
120
121 %% FM Modulation
122 sig_fm_modded = fm_mod(f_c_fm, A_c_fm, sig_m, k_f, f_s_m, f_s_c_fm);
123 sig_fm_demodded = fm_demod(sig_fm_modded, A_c_fm, f_s_m, f_s_c_fm, ...
124 k_f, W);
125 plot_modded_demodded(sig_fm_modded, sig_fm_demodded, f_s_m, ...
126 f_s_c_fm, 'fm_problematic');
127 audiowrite('sig_fm_demodded.wav', sig_fm_demodded, f_s_m);
128
129 %% Conventional AM with noise
130 demod_fn = @(sig_mod) conv_demod(sig_mod, A_c_conv, a_conv, f_s_m, ...
131 f_s_c_conv, W);
132 [sigs_conv_modded, sigs_conv_demodded, snrs] = apply_noise(noise_stds, ...
133 demod_fn, sig_conv_modded, sig_conv_demodded, f_s_m, ...
134 f_s_c_conv, W, 'conv');
135 var_noise_emp(1,:) = snrs;
136
137 %% calculate conventional AM theoretical SNR
138 var_noise_theo(1,:) = 10 * log10(a_conv^2 * A_c_conv^2 * ...
139 bandpower(sig_m) * (2 * (2 * noise_stds.^2) * W / f_s_c_conv).^-1);
140
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141 %% SSB AM with noise
142 demod_fn = @(sig_mod) ssb_demod(sig_mod, f_c_ssb, A_c_ssb, f_s_m, ...
143 f_s_c_ssb, W);
144 [sigs_ssb_modded, sigs_ssb_demodded, snrs] = apply_noise(noise_stds, ...
145 demod_fn, sig_ssb_modded, sig_ssb_demodded, f_s_m, f_s_c_ssb, ...
146 W, 'ssb');
147 var_noise_emp(2,:) = snrs;
148
149 %% calculate SSB AM theoretical SNR
150 var_noise_theo(2,:) = 10 * log10(A_c_ssb^2 * bandpower(sig_m) * ...
151 ((2 * noise_stds.^2) * W / f_s_c_ssb).^-1);
152
153 %% PM with noise
154 demod_fn = @(sig_mod) pm_demod(f_c_pm, A_c_pm, sig_mod, k_p, f_s_m, ...
155 f_s_c_pm, W);
156 [sigs_pm_modded, sigs_pm_demodded, snrs] = apply_noise(noise_stds, ...
157 demod_fn, sig_pm_modded, sig_pm_demodded, f_s_m, f_s_c_pm, W, 'pm');
158 var_noise_emp(3,:) = snrs;
159
160 %% calculate PM theoretical SNR
161 var_noise_theo(3,:) = 10 * log10(k_p^2 * A_c_pm^2 * bandpower(sig_m) * ...
162 (2 * (2 * noise_stds.^2) * W / f_s_c_pm).^-1);
163
164 %% FM with noise
165 demod_fn = @(sig_mod) fm_demod(sig_mod, A_c_fm, f_s_m, f_s_c_fm, ...
166 k_f, W);
167 [sigs_fm_modded, sigs_fm_demodded, snrs] = apply_noise(noise_stds, ...
168 demod_fn, sig_fm_modded, sig_fm_demodded, f_s_m, f_s_c_fm, W, 'fm');
169 var_noise_emp(4,:) = snrs;
170
171 %% calculate FM theoretical SNR
172 beta_f = k_f / W;
173 var_noise_theo(4,:) = 10 * log10(3 * beta_f^2 * A_c_fm^2 * ...
174 bandpower(sig_m) * (2 * (2 * noise_stds.^2) * W / f_s_c_fm).^-1);
175
176 %% Changing modulation index of Conventional AM
177 mod_fn = @(sig_m, a) conv_mod(f_c_conv, A_c_conv, a, sig_m, f_s_m, ...
178 f_s_c_conv);
179 demod_fn = @(sig_mod, a) conv_demod(sig_mod, A_c_conv, a, f_s_m, ...
180 f_s_c_conv, W);
181 var_mod_ind_emp(1,:) = apply_modulation_factor( ...
182 a_conv, noise_std_conv, mod_fn, demod_fn, sig_m, ...
183 sigs_conv_modded(4,:), sigs_conv_demodded(4,:), f_s_m, ...
184 f_s_c_conv, W, sig_conv_demodded, 'a', 'conv');
185
186 %% calculate conventional AM theoretical SNR
187 var_mod_ind_theo(1,:) = 10 * log10([a_conv/2 a_conv a_conv*2].^2 * ...
188 A_c_conv^2 * bandpower(sig_m) * ( 2 * (2 * noise_std_conv) * W / ...
189 f_s_c_conv)^-1);
190
191 %% Changing the modulation index of PM
192 mod_fn = @(sig_m, k_p) pm_mod(f_c_pm, A_c_pm, sig_m, k_p, f_s_m, f_s_c_pm);
193 demod_fn = @(sig_mod, k_p) pm_demod(f_c_pm, A_c_pm, sig_mod, k_p, ...
194 f_s_m, f_s_c_pm, W);
195 var_mod_ind_emp(2,:) = apply_modulation_factor( ...
196 k_p, noise_std_pm, mod_fn, demod_fn, sig_m, sigs_pm_modded(4,:), ...
197 sigs_pm_demodded(4,:), f_s_m, f_s_c_pm, W, sig_pm_demodded, ...
198 'k_p', 'pm');
199
200 %% calculate PM theoretical SNR
201 var_mod_ind_theo(2,:) = 10 * log10([k_p/2 k_p k_p*2].^2 * A_c_pm^2 * ...
202 bandpower(sig_m) * (2 * (2 * noise_std_pm^2) * W / f_s_c_pm).^-1);
203
204 %% Changing the modulation index of FM
205 mod_fn = @(sig_m, k_f) fm_mod(f_c_fm, A_c_fm, sig_m, k_f, ...
206 f_s_m, f_s_c_fm);
207 demod_fn = @(sig_mod, k_f) fm_demod(sig_mod, A_c_fm, f_s_m, ...
208 f_s_c_fm, k_f, W);
209 var_mod_ind_emp(3,:) = apply_modulation_factor( ...
210 k_f, noise_std_fm, mod_fn, demod_fn, sig_m, sigs_fm_modded(3,:), ...
211 sigs_fm_demodded(3,:), f_s_m, f_s_c_fm, W, sig_fm_demodded, ...
212 'k_f', 'fm');
213
214 %% calculate FM theoretical SNR
215 beta_f = [k_f/2 k_f k_f*2] / W;
216 var_mod_ind_theo(3,:) = 10 * log10(3 * beta_f.^2 * A_c_fm^2 * ...
217 bandpower(sig_m) * (2 * (2 * noise_std_fm.^2) * W / f_s_c_fm).^-1);
218
219 %% Print out results
220 fprintf('Theoretical SNRs from varying noise variance');
221 var_noise_theo(:,2:4)
222 fprintf('Empirical SNRs from varying noise variance');
223 var_noise_emp(:,2:4)
224 fprintf('Theoretical SNRs from varying modulation indices');
225 var_mod_ind_theo
226 fprintf('Empirical SNRs from varying modulation indices');
227 var_mod_ind_emp
228
229 % plot modulation modded and demodded signals and their FTs
230 % params:
231 % sig_modded = modulated signal
232 % sig_demodded = demodulated signal

233 % f_s_m = baseband sampling frequency
234 % f_s_c = modulated signal sampling frequency
235 % figname = name of figure
236 function plot_modded_demodded(sig_modded, sig_demodded, f_s_m, f_s_c, ...
237 figname)
238
239 figure('visible', 'off');
240 tiledlayout(2, 2, 'TileSpacing', 'Compact', 'Padding', 'Compact');
241
242 duration = length(sig_modded) / f_s_c;
243 t_c = linspace(0, duration, length(sig_modded));
244 t_m = linspace(0, duration, length(sig_demodded));
245
246 % plot modded signal in time domain
247 nexttile();
248 plot(t_c, sig_modded);
249 title('Modulated signal');
250 ylabel('$u(t)$');
251 xlabel('$t$');
252 xlim([0 duration]);
253
254 % plot modded signal in frequency domain
255 nexttile();
256 [f, ft] = plot_ft(sig_modded, f_s_c);
257 semilogy(f, ft);
258 title('Modulated signal Fourier transform magnitude');
259 ylabel('$|U(f)|$');
260 xlabel('$f$');
261
262 % plot demodded signal in time domain
263 nexttile();
264 plot(t_m, sig_demodded);
265 title('Demodulated signal');
266 ylabel('$r(t)$');
267 xlabel('$t$');
268 ylim([-1.2 1.2]);
269 xlim([0 duration]);
270
271 % plot demodded signal in frequency domain
272 nexttile();
273 [f, ft] = plot_ft(sig_demodded, f_s_m);
274 semilogy(f, ft);
275 title('Demodulated signal Fourier transform magnitude');
276 ylabel('$|R(f)|$');
277 xlabel('$f$');
278 ylim([10e-8, 10e-2]);
279
280 fig_save(figname, [40 20]);
281 end
282
283 % apply noise to signals modulated with different modulation indices
284 % params:
285 % mod_index = modulation index values
286 % noise_std = standard deviation of noise to add
287 % mod_fn = lambda to modulate a signal
288 % demod_fn = lambda to demod a noisy modulated signal
289 % sig_m = message signal
290 % sig_modded = reference modded signal
291 % sig_demodded = reference demodded signal
292 % f_s_m = baseband sampling frequency
293 % f_s_c = modulated signal sampling frequency
294 % tau = post-demodulation LPF cutoff frequency
295 % sig_demodded_no_noise = reference no-noise demodulated signal
296 % variant = name of modulation index
297 % mod_type = modulation scheme
298 % returns:
299 % snrs = SNRs of noisy modulated signals
300 function snrs = apply_modulation_factor( ...
301 mod_index, noise_std, mod_fn, demod_fn, sig_m, sig_modded, ...
302 sig_demodded, f_s_m, f_s_c, tau, sig_demodded_no_noise, variant, ...
303 mod_type)
304
305 sigs_modded = zeros(3, length(sig_modded));
306 sigs_demodded = zeros(3, length(sig_demodded));
307
308 % half the modulation index
309 sigs_modded(1,:) = mod_fn(sig_m, mod_index/2) + ...
310 noise_std * randn(1, length(sig_modded));
311 sigs_demodded(1,:) = lowpass_audible(demod_fn(sigs_modded(1,:), ...
312 mod_index/2), f_s_m, tau);
313
314 % original modulation index
315 sigs_modded(2,:) = sig_modded;
316 sigs_demodded(2,:) = sig_demodded;
317
318 % double the modulation index
319 sigs_modded(3,:) = mod_fn(sig_m, mod_index*2) + ...
320 noise_std * randn(1, length(sig_modded));
321 sigs_demodded(3,:) = lowpass_audible(demod_fn(sigs_modded(3,:), ...
322 mod_index*2), f_s_m, tau);
323
324 % plot
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325 snrs = plot_with_noise([mod_index/2, mod_index, mod_index*2], ...
326 sigs_modded, sigs_demodded, f_s_m, f_s_c, ...
327 sig_demodded_no_noise, variant, mod_type);
328 end
329
330 % apply different noise to a modded signal
331 % params:
332 % noise_stds = list of standard deviations of the noise
333 % demod_fn = lambda to demod a noisy signal
334 % sig_modded_no_noise = no-noise modded signal reference
335 % sig_demodded_no_noise = no-noise demodded signal reference
336 % f_s_m = baseband sampling frequency
337 % f_s_c = modulated signal sampling frequency
338 % tau = cutoff frequency
339 % mod_type = modulation scheme
340 % returns:
341 % sigs_modded = modulated signals with applied noise
342 % sigs_demodded = demodulated noisy modded signals
343 % snrs = snrs for demodded signals
344 function [sigs_modded, sigs_demodded, snrs] = apply_noise(noise_stds, ...
345 demod_fn, sig_modded_no_noise, sig_demodded_no_noise, f_s_m, f_s_c, ...
346 tau, mod_type)
347
348 sigs_modded = zeros(length(noise_stds), ...
349 length(sig_modded_no_noise));
350 sigs_demodded = zeros(length(noise_stds), ...
351 length(sig_demodded_no_noise));
352
353 % first element will be the no-noise variant
354 sigs_modded(1,:) = sig_modded_no_noise;
355 sigs_demodded(1,:) = sig_demodded_no_noise;
356
357 % loop through each noise process
358 for i = 2:length(noise_stds)
359 % modulate, add noise
360 sigs_modded(i,:) = sig_modded_no_noise + ...
361 noise_stds(i) * randn(1, length(sig_modded_no_noise));
362
363 % demod
364 sigs_demodded(i,:) = lowpass_audible(...
365 demod_fn(sigs_modded(i,:)), f_s_m, tau);
366 end
367
368 % plot
369 snrs = plot_with_noise(noise_stds, sigs_modded, sigs_demodded, ...
370 f_s_m, f_s_c, sig_demodded_no_noise, '\sigma_n', mod_type);
371 end
372
373 % approximates SNR in dB, given the pristine demodded signal and a noisy
374 % variant; approximates noise as the difference between the two
375 % params:
376 % sig_no_noise = demodded signal with no noise
377 % sig_noisy = noisy signal to calculate the SNR of
378 % returns:
379 % res = SNR (in dB)
380 function res = snr(sig_no_noise, sig_noisy)
381 res = 10 * log10(bandpower(sig_no_noise) / ...
382 bandpower(sig_no_noise - sig_noisy));
383 end
384
385 % plots the demodded signal, spectrum of modded signal, and spectrum of

386 % demodded signal for a series of related signals with one varying
387 % variable; also calculates SNRs and returns them
388 % variant
389 % params:
390 % variants = list of varying parameter values
391 % sigs_modded = modded signals
392 % sigs_demodded = demodded signals
393 % f_s_m = sample rate of baseband signal
394 % f_s_c = sample rate of modulated signal
395 % sig_snr_ref = reference for SNR calculation (i.e., no-noise demodded)
396 % variant = name of varying parameter
397 % mod_type = modulation type (e.g., CONV, FM)
398 % returns:
399 % snrs = calculated SNRs of each demodded signal wrt. sig_snr_ref
400 function [snrs] = plot_with_noise(variants, sigs_modded, sigs_demodded, ...
401 f_s_m, f_s_c, sig_snr_ref, variant, mod_type)
402
403 N = length(variants);
404 snrs = zeros(N, 1);
405
406 figure('visible', 'off');
407 tiledlayout(N, 3, 'TileSpacing', 'Compact', 'Padding', 'Compact');
408
409 for i = 1:N
410
411 % plot demodded signal
412 nexttile();
413 plot(sigs_demodded(i,:));
414 ylim([-1.25, 1.25]);
415 snr_db = snr(sig_snr_ref, sigs_demodded(i,:));
416 snrs(i) = snr_db;
417 title(sprintf('Demodded signal; $%s=%0.2f$, SNR=%0.2fdB', ...
418 variant, variants(i), snr_db));
419 ylabel('$m(t)$');
420 xlabel('$t$');
421
422 % plot spectrum of modded signal
423 nexttile();
424 [f, ft] = plot_ft(sigs_modded(i,:), f_s_c);
425 semilogy(f, ft);
426 title(sprintf('Spectrum of modded signal; $%s=%0.2f$', ...
427 variant, variants(i)));
428 ylabel('$|M_{mod}(f)|$');
429 xlabel('$f$');
430
431 % plot spectrum of demodded signal
432 nexttile();
433 [f, ft] = plot_ft(sigs_demodded(i,:), f_s_m);
434 semilogy(f, ft);
435 ylim([10e-10, 10e0]);
436 title(sprintf('Spectrum of demodded signal; $%s=%0.2f$', ...
437 variant, variants(i)));
438 ylabel('$|M(f)|$');
439 xlabel('$f$');
440 end
441
442 if strcmp(variant, '\sigma_n')
443 variant = 'noise_std';
444 end
445 fig_save(sprintf('%s_var_%s', mod_type, variant), [60, 10 * N]);
446 end
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