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1 P-current

Using the definition for probability density P = |ψ2| = ψ∗ψ, calculate ∂P/∂t to
find that

∂P

∂t
+
∂J
∂x

= 0

in this way defining the probability current J.

We know that J is defined as:

J :=
i~
2m

(
ψ
∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
So:

∂

∂t
P =

∂

∂t
|ψ|2 =

∂

∂t
ψ∗ψ = ψ∗

∂ψ

∂t
+ ψ

∂ψ∗

∂t

= ψ∗
[

1

i~

(
− ~2

2m

∂2ψ

∂x2
+ V ψ

)]
+ ψ

[
− 1

i~

(
− ~2

2m

∂2ψ

∂x2
+ V ψ

)]
= ψ∗

[
− ~

2mi

∂2ψ

∂x2

]
+
V

i~
ψ∗ψ + ψ

[
~

2mi

∂2ψ

∂x2

]
− V

i~
ψ∗ψ

=
i~
2m

[
ψ∗
∂2ψ

∂x2
− ψ∂

2ψ∗

∂x2

]
=

i~
2m

[(
∂ψ

∂x

∂ψ∗

∂x
+ ψ∗

∂

∂x

(
∂ψ

∂x

))
−
(
∂ψ∗

∂x

∂ψ

∂x
+ ψ

∂

∂x

(
∂ψ∗

∂x

))]
=

i~
2m

[
∂

∂x

(
ψ∗
∂ψ

∂x

)
− ∂

∂x

(
ψ
∂ψ∗

∂x

)]
=

∂

∂x

[
i~
2m

(
ψ∗
∂ψ

∂x
− ψ∂ψ

∗

∂x

)]
= − ∂

∂x
J

⇒ ∂P

∂t
+
∂J
∂x

= 0
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2 0-current

For the potential step problem, in the case that E < V0, there is a finite proba-
bility that a particle is found in the forbidden region, x > 0, where E < V0. Yet
the probability current in the transmitted region, Jtrans = 0. Show these results.

The time-independent solution U to the finite step function was governed by
the following equations. Note that UL denotes the time-independent solution
to the Schödinger equation for x < 0 (V (x) = 0), and UR denotes the like for
x > 0 (V (x) = V0).

d2UL
dx2

= −2mE

~2
UR

d2UR
dx2

= −2m(E − V0)

~2
UR

UL(x) = eikx +Re−ikx UR(x) = Teiκx

k2 =
2mE

~2
κ2 =

2m(E − V0)

~2

R =
k − κ
k + κ

T =
2k

k + κ

We are interested in the solution in the positive region, where E < V0. This
would suggest that κ becomes (pure) imaginary, so that:

κ = i

√
2m(V0 − E)

~

UR = T exp

(
−2m(V0 − E)

~
x

)
This is a decaying exponential with coefficient T 6= 0, so UR(x) 6= 0 in the
forbidden region. Since S(t) is also an exponential (and thus not identically
zero), then P = |ψ2| = |U(x)S(t)| 6= 0, there is a nonzero probability that a
particle is found in the forbidden region. However, if we were to calculate the
probability current, it becomes zero now that UR becomes pure real:

JR =
i~
2m

(
ψ
∂ψ∗

∂x
− ψ∗ ∂ψ

∂x

)
=

i~
2m

(
[UR(x)S(t)]

∂

∂x
[UR(x)S∗(t)]− [UR(x)S∗(t)]

∂

∂x
[UR(x)S(t)]

)
=

i~
2m

(
URSS

∗ ∂UR
∂x
− URS∗S

∂UR
∂x

)
=

i~
2m

(0)

= 0

In other words, the probability distribution of the particles in the forbidden
region is not evolving over time.
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How low can you go?

Use the property of the lowering operator and ground state of the QMSHO:

â−ψ0 = 0

to find the ground state wave function ψ0. Now raise ψ0 to get ψ1 and then lower
ψ1 back to ψ0. Do you get back to your starting point or is there a “leftover”?

Definitions:

â− :=

√
mω

2~

(
x̂+

ip̂

mω

)
â+ :=

√
mω

2~

(
x̂− ip̂

mω

)

p̂ := −i~ ∂

∂x

Solving the ODE:√
mω

2~

(
x̂+

i

mω

(
−i~ ∂

∂x

))
ψ0 = 0

~
mω

∂ψ0

∂x
+ xψ0 = 0

dψ0

ψ0
= −mωx

~
dx

ψ0 = A exp

(
−mωx

2

2~

)
Normalizing:

1 =

∫ ∞
−∞

dxψ∗ψ

=

∫ ∞
−∞

dxA∗ exp

(
−mωx

2

2~

)
A exp

(
−mωx

2

2~

)
= |A|2

∫ ∞
−∞

dx exp

(
−mωx

2

~

)
|A| =

(mω
π~

)1/4
ψ0 = 4

√
mω

π~
exp

(
−mωx

2

2~

)
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To save some typing, let α = mω~−1. “Raising” ψ0 to ψ′1 (non-normalized):

ψ′1 = â+ψ0

=

√
α

2

(
x̂+

i

mω

(
−i~ ∂

∂x

))
ψ0

=

√
α

2

(
x̂− 1

α

∂

∂x

)[
4

√
α

π
exp

(
−αx

2

2

)]
=

√
α

2
4

√
α

π

(
x exp

(
−αx

2

2

)
− 1

α

(
−2αx

2

)
exp

(
−αx

2

2

))
=

√
α

2
4

√
α

π
(2x) exp

(
−αx

2

2

)
=
√

2αxψ0

“Lowering” ψ′1 to ψ′0:

ψ′0 = â−ψ′1

=

√
α

2

(
x̂− i

mω

(
−i~ ∂

∂x

))
ψ′1

=

√
α

2

√
2α 4

√
α

π

(
x̂+

1

α

∂

∂x

)[
x exp

(
−αx

2

2

)]
= α 4

√
α

π

(
x2 exp

(
−αx

2

2

)
+

1

α

(
−2αx

2
x exp

(
−αx

2

2

)
+ exp

(
−αx

2

2

)))
= α 4

√
α

π

(
1

α

)
exp

(
−αx

2

2

)
= ψ0

We see that ψ′0 = ψ0, so there is no “leftover” scaling factor. Or, if we know
the scaling factor caused by the raising and lowering operators (shown in the
notes):

â+ψn =
√
n+ 1ψn+1

â−ψn =
√
nψn−1

then we get the same result:

â−â+ψ0 = â−(
√

0 + 1ψ0+1) = â−ψ1 =
√

1ψ1−1 = ψ0

Operator, operator

Find the position and momentum operators, x̂ and p̂, for the SHO potential in
terms of the raising and lowering operators, â+ and â−.
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We defined the raising and lowering operators partially in terms of p̂ and x̂, so
we just need to solve in reverse. Solving for p̂:

â− − â+ =

√
mω

2~

(
2
ip̂

mω

)
=

√
2

mω~
ip̂

p̂ = −i
√
mω~

2
(â− − â+)

Solving for x̂:

â− + â− =

√
mω

2~
(2x̂) =

√
2mω

~
x̂

x̂ =

√
~

2mω
(â− + â+)

Great expectations

Find 〈x〉, 〈p〉, 〈x2〉, 〈p2〉, and 〈K〉 (where K is the kinetic energy) for the n-th
state of the SHO.

We use the linearity of the bra-ket (expectation value, or inner product) and
the orthonormality of solutions (〈ψn|ψm〉 = δnm) implicitly.

〈x〉n = 〈ψn|x̂ψn〉

=

〈
ψn

∣∣∣∣∣
√

~
2mω

(â− + â−)ψn

〉

=

√
~

2mω

[
〈ψn|â−ψn〉+ 〈ψn|â+ψn〉

]
=

√
~

2mω

[√
n 〈ψn|ψn−1〉+

√
n+ 1 〈ψn|ψn+1〉

]
=

√
~

2mω

[√
n(0) +

√
n+ 1(0)

]
= 0
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〈p〉n = 〈ψn|p̂ψn〉

=

〈
ψn

∣∣∣∣∣−i
√
mω~

2
(â− − â+)ψn

〉

= −i
√
mω~

2

[
〈ψn|â−ψn〉 − 〈ψn|â+ψn〉

]
= i

√
mω~

2

[√
n 〈ψn|ψn−1〉 −

√
n+ 1 〈ψn|ψn+1〉

]
= i

√
mω~

2

[√
n(0)−

√
n+ 1(0)

]
= 0

Intuitively, the expectations for position and momentum can be seen by the
symmetry of the SHO potential and an intuitive understanding of displacement
and momentum in the classical sense. The variances are less obvious.

〈x2〉n = 〈ψn|x̂2ψn〉

=

〈
ψn

∣∣∣∣ ~
2mω

(â− + â+)2ψn

〉
=

~
2mω

[〈
ψn
∣∣ (â−)2ψn

〉
+
〈
ψn
∣∣ â−â+ψn〉+

〈
ψn
∣∣ â+â−ψn〉+

〈
ψn
∣∣ (â+)2ψn

〉]
=

~
2mω

[√
n(n− 1) 〈ψn|ψn−2〉+ (n+ 1) 〈ψn|ψn〉+ n 〈ψn|ψn〉+

√
(n+ 1)(n+ 2) 〈ψn|ψn+2〉

]
=

~
2mω

[√
n(n− 1)(0) + (n+ 1)(1) + n(1) +

√
(n+ 1)(n+ 2)(0)

]
=

~
2mω

(2n+ 1)

〈p2〉n = 〈ψn|p̂2ψn〉

=

〈
ψn

∣∣∣∣−mω~2
(â− − â+)ψn

〉
= −mω~

2

[〈
ψn
∣∣ (â−)2ψn

〉
−
〈
ψn
∣∣ â−â+ψn〉− 〈ψn ∣∣ â+â−ψn〉+

〈
ψn
∣∣ (â+)2ψn

〉]
= −mω~

2

[√
n(n− 1)(0)− (n+ 1)(1)− n(1) +

√
(n+ 1)(n+ 2)(0)

]
=
mω~

2
(2n+ 1)

〈K〉n =

〈
p2

2m

〉
=

1

2m
〈p2〉 =

ω~
4

(2n+ 1)
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