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Don’t box me in We wish to derive the final coefficient in the classical for-
mula for energy density,

u = kT

(
8πν2

c3

)
The quantity we are trying to find is the density of states w.r.t. frequency
and space. In other words, if N represents number of states, then we are
trying to find

∂2N

∂V ∂ν

The modes must all have nodes in the x, y, and z directions. Since these
nodes are stationary, the EM wave must be a standing wave:

~E = ~E0 sin(kxx) sin(kyy) sin(kzz) sin(ωt)

with the node imposing the condition (assume the box is a cube with
length L):

sin(kxL) = 0⇒ kxL = πnx (nx ∈ Z+)

in the x, y, and z directions. By substituting k = 2π
λ = 2πc

ν ,

νx = nx
c

2L
(nx ∈ Z+)

This is a set of discrete frequencies in one direction. More generally, a
three-dimensional mode can be uniquely defined by its tuple of (nx, ny, nz)
coordinates, and so we define this as the phase space. In this space, there
is clearly one mode at every (discrete integer-tuple) coordinate (but only
existing in the first octant), so the number density δ is:

δ =
1 mode

1 (unit volume)

where, if N is a number of modes and V is a (dimensionless) “volume” in
this coordinate space, then

N = V d
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In other words, the number of modes is numerically equal to the volume
in this space. Let

n :=
√
n2x + n2y + n2z

indicate the magnitude of the position vector in this space and

ν :=
√
ν2x + ν2y + ν2z

indicate the magnitude of the frequency. To find the “density” of this
space with respect to frequency, we can find the number of modes with
a frequency (magnitude) between ν0 and ν0 + dν and divide by dν (i.e.,
differentiating w.r.t. frequency). The change in volume in the first octant
is an eighth of a thin spherical shell with thickness ν. Since the number
density is equal to the volume in the n coordinates, we begin by stating
the volume of such a shell in n coordinates and then convert it to ν.

dN = dV =
1

8

(
4πn2

)
dn

n =
2L

c
ν, dn =

2L

c
dν

dN

dν
=

4πL3ν2

c3

Now, if we wish to find the density w.r.t. volume (in the regular coordinate
system), we can divide by the volume of the cube, L3. (It is a derivative
in the limit of L→ 0.)

∂2N

∂V ∂ν
=

4πν2

c3

We can follow a similar approach to find the analogue w.r.t. λ. Make
the substitutions ν = c/λ and dν = −c/λ2 dλ to arrive at the analogous
density w.r.t. space and wavelength:

∂2N

∂V
(
− c
λ2 ∂λ

) =
4π
(
c
λ

)2
c3

∂2N

∂V ∂λ
= −4π

λ4

Note that, in this derivative formulation, the “density” of modes w.r.t. λ
is negative. To get the desired factor of 8, we note that there are actually
two valid polarizations for each (nx, ny, nz) tuple, so we double both of
these results:

∂2N

∂V ∂ν
=

8πν2

c3

∂2N

∂V ∂λ
= −8π

λ4
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Certainly! Reformulate the wave packet-based derivation in the notes so that
we get, for the uncertainty product:

∆k∆x ≥ 1

2

Using a Gaussian for A(k) and the given measure of spread (the width of
the Gaussian at height e−1) gives the constant 4. Thus, if we reformulate
the problem to use a different measure of spread (i.e., to standard devia-
tion), we can change the constant that the uncertainties of wave number
and position multiply to. Start with the same Gaussian wave number
amplitude distribution:

A(k) = e−
α
2 (k−k0)2

The inverse Fourier transform of this wave number (at t = 0) is the wave-
form w.r.t. position (which is also a Gaussian amplitude distribution):

Ψ(x, 0) =

∫ ∞
−∞

dk A(k)eikx =

√
2π

α
eik0xe−

x2

2α

(We neglect the tedious details of the inverse Fourier transform calculation
here and use the result from the lecture notes.) Noting that the squares
of A and Ψ form the PDF f(k) of the wave number and PDF g(x) of the
position, respectively:

f(k) = A2(k) = e−α(k−k0)
2

g(x) = |Ψ2(x, 0)| = 2π

α
e−

x2

α

The general form of a Gaussian PDF is

h(x) =
1

σ
√

2π
exp

(
− (x− µ)2

2σ2

)
Since f and g are clearly in the form of a Gaussian (although not normal-
ized, but this doesn’t affect spread), we can see by matching the exponent
to the Gaussian form that:

σk =
1√
2α

σx =

√
α

2

Using this measure of spread instead of the ∆-spread defined in the lecture
notes, we get:

σkσx =

√
1

2α

√
α

2
=

1

2

which saturates the stated lower bound of 1
2 . (This doesn’t show the

inequality, but we obtain a product lower than 4 from the lecture notes.)
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