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Tale of two sigmas The Thomson scattering cross-section is given by

σth =
8π

3

(
q2

4πε0mc2

)2

Plugging in values:
q = ±1.602× 10−19 C

ε0 = 8.854× 10−12 F/m

c = 2.998× 108 m/s

me = 9.109× 10−31 kg, mp = 1.673× 10−27 kg

We get:
σe = 6.650× 10−29 m2, σp = 1.971× 10−35 m2

It makes sense that the cross-section of an electron’s scattering area is
larger than that of a proton, since the electron is free to move over a much
larger area than the proton is; i.e., assuming an atom’s center-of-mass is
fixed, the volume (and therefore surface area) occupied by the nucleus is
tiny compared to the amount of volume and surface area the electrons are
allowed to roam, and therefore it makes sense that the electron scatters
more radiation per the same overall area.

The “classical electron radius” is the term inside the square, i.e., q2

4πε0mc2
:

r0e = 2.817× 10−15 m

N2 blues N2 characteristic frequency (“transition”) has λ ≈ 75 nm (ultravio-
let). Number density per unit surface area “footprint” on Earth’s surface
of N2 is n = 1.68× 1025 cm−2.

a) Blue sunlight has λ ≈ 450 nm. The transmitted energy flux through
the atmosphere

〈S〉tr = 〈S0〉e−Nσz

where S0 is the initial unscattered energy flux, N is the scatterer
number density (per unit volume), σ is the scattering cross-section,
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and z is the distance the light has to travel through. In this case,
Nz = n is the number of scatterers per cross-sectional area. Thus
the percentage of light scattered is

% light scattered =
〈S0〉 − 〈S0〉e−nσ

〈S0〉
= 1− e−nσ

where σ is the Rayleigh scattering cross-section.

ω =
2πc

λ
= 4.186× 1015rad/s; ω0 =

2πc

λ0
= 2.512× 1016rad/s

σray =

(
ω2

ω2 − ω2
0

)2

σth

=

(
(4.186× 1015 rad/s)2

(4.186× 1015 rad/s)2 − (2.512× 1016 rad/s)2

)2

(6.650×10−29 m2)

= 5.425× 10−32 m2

Thus

% light scattered = 1− exp(−(1.68× 1029 m−2)(5.425× 10−32 m2))

= 0.907%

b) The path taken by a wave of light from the Sun when the angle of
elevation is 5◦ is much longer than that when it is shining directly
overhead. Assuming that the Earth is a planar slab and the atmo-
sphere is a constant height above the surface of the Earth, the ratio
of the vertical path vs. the path at 5◦ elevation is sin 5◦. The number
of electrons that scatter the blue light should be roughly proportional
to the length of the path, so n′ = n

sin 5◦ .

=
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Thus the relative amount of light scattered is

% light scattered = 1− e−n
′σ = 1− exp

(
− nσ

sin(5◦)

)
= 9.93%

v and c The Maxwell equations for materials:

∇ · ~D = 0, ∇ · ~B = 0, ∇× ~E = −∂
~B

∂t
, ∇× ~H =

∂ ~D

∂t

~D = ε ~E, ~B = µ ~H

a) Solving the wave equation for ~E and ~B:

∇× (∇× ~E) = ∇(∇ · ~E)−∇2 ~E = ∇×

(
−∂

~B

∂t

)

∇(0)−∇2 ~E = −µ ∂
∂t

(∇× ~H)

∇2 ~E = −µ ∂
∂t

∂ ~D

∂t
= µε

∂2 ~E

∂t2

This is the wave equation for ~E with v = 1√
µε . Similarly, for ~B:

∇× ~H =
1

µ
(∇(∇ · ~B)−∇2 ~B) = ∇×

(
∂ ~D

∂t

)

1

µ
(∇(0)−∇2 ~B) = ε

∂

∂t
(∇× ~E)

− 1

µ
∇2 ~B = ε

∂

∂t

(
−∂

~B

∂t

)

∇2 ~B = µε
∂2 ~B

∂t2

This is the wave equation for ~B with the same v. Since ~B and ~E are
scaled versions of ~D and ~H and the wave equation is linear, these
fields also are solutions to the wave equation.

b) κe = ε/ε0 = 1 + χe (result from lecture). Let µ ≈ µ0. Then

n =
c

v
=

(µ0ε0)−1/2

(µ0ε)−1/2
=

√
µ0ε

µ0ε0
=
√
κe
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Dielectric raindrops and rods The subscript 1 indicates entities just outside
the droplet, and 2 indicates those inside the raindrop. The ~E-field within
the raindrop is uniform and horizontal. Boundary conditions imposed by
material Maxwell’s equations:

n̂ · ( ~D2 − ~D1 = 0), n̂× ( ~E2 − ~E1) = 0

Normal component of ~E1:

~E⊥1 =
1

ε1
~D⊥1 =

1

ε1
~D⊥2 =

1

ε1
~D2 cos θ =

ε2
ε1
~E2 · r̂

Tangential component of ~E1:

~E
‖
1 = ~E

‖
2 = ~E2 × r̂

Let ε2/ε1 = 2. Thus, the vector ~E1 in (r̂, θ̂) coordinates is(
2 ~E2 · r̂, ~E2 × r̂

)
= (2E2 cos θ,E2 sin θ)

In Cartesian coordinates (x̂, ŷ), this is:(
2E2 cos2 θ + E2 sin θ cos

(
θ − π

2

)
, 2E2 cos θ sin θ + E2 sin θ sin

(
θ − π

2

))

Figure 2. Droplet and E-fields. Black lines indicate the horizontal orien-
tation of the ~E field. The blue vectors indicate the ~E field directly outside
the droplet. The green vector indicates the magnitude of the (uniform)
~E within the droplet. The relative magnitude of the blue vectors and the
green vectors are drawn to scale, with ε2/ε1 = 2. (The green vector and
blue vectors are all pointing right, but arrowheads are not shown.)
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