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1 Maxwell’s equations

1.1 General form

Illustrated previously in E&M. In order: Gauss’s flux laws (electric and mag-
netic); Faraday’s induction law; Ampere’s current law. Shown in integral and
differential forms. ‹

∂V

~E · d~s =
1

ε

˚
V

ρ dV ≡ ∇ · ~E =
ρ

ε
(1)

‹
∂V

~B · d~s = 0 ≡ ∇ · ~B = 0 (2)

˛
C

~E · d~l = −
¨
A

∂ ~B

∂t
· d~s ≡ ∇× ~E = −∂

~B

∂t
(3)

˛
C

~B · d~l = µ

¨
A

(
~j + ε

∂ ~E

∂t

)
· d~s ≡ ∇× ~B = µ

(
~j + ε

∂ ~E

∂t

)
(4)

where ε is permittivity, µ is the permeability, and ~j is current density.

1.2 In a vacuum

In a vacuum, there is no charge density, and thus no current density. Thus
Maxwell’s equations in a vacuum (in differential form) simplify to

∇ · ~E = 0 (5)

∇ · ~B = 0 (6)

∇× ~E = −∂
~B

∂t
(7)

∇× ~B = µ0ε0
∂ ~E

∂t
(8)

where ε0 is the permittivity of free space and µ0 is the permeability of free
space.

1.3 Review of differential operators

1.3.1 The del operator ∇

Note that the nabla/del operator in the below forms are principally defined for
use with Cartesian coordinates. In polar (cylindrical or spherical) coordinates,
these operations have to be converted from these Cartesian equivalents. It can
be treated as a “vector”:

∇ =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
(9)
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∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
(10)

∇ · ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

(11)

∇× ~A =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ax Ay Az

∣∣∣∣∣∣ (12)

The Laplacian is a second-order differential operator, and can be treated as a
“scalar” operator obtained from the dot product of nabla with itself:

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(13)

∇2f =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
(14)

∇2 ~A =
(
∇2Ax,∇2Ay,∇2Az

)
(15)

1.4 Other useful identities

~A · ( ~A× ~B) = 0 (16)

~A · ( ~A× ~C) = ( ~A× ~B) · ~C (17)

∇×∇f = 0 (curl of gradient field is zero) (18)

∇ · (∇× ~A) = 0 (divergence of curl field is zero) (19)

∇× (∇× ~A) = ∇(∇ · ~A)−∇2 ~A (20)

∇× ( ~A · ~B) = (∇× ~A) · ~B (21)

1.5 Proving the wave equation from Maxwell’s equations

The canonical form for a wave (what we desire to achieve):

∂2ψ

∂t2
= v2

∂2ψ

∂x2
(22)

Remembering the side of v makes sense since it is time over distance, canceling
out the units. Assuming a vacuum, we start with (Eq. 7) and apply identity
(Eq. 20):

∇×

(
∇× ~E = −∂

~B

∂t

)

∇(∇ · ~E)−∇2 ~E = − ∂

∂t
(∇× ~B)

4



∇2 ~E = µ0ε0
∂2 ~E

∂t2
(23)

This is in the form of (Eq. 22) in the 3D case, with c2 = 1
µ0ε0

. The same can

be shown for ~B.
Note that since we know that sinusoids are solutions to the wave equation,

then any periodic ~E function is a solution for this ~E wave equation (since it can
be decomposed into a linear combination of sinusoids using Fourier analysis);

this would then force constraints on ~B (and vice versa for arbitrary ~B waves).

If there is a pair of matching ~E and ~B oscillations in space that match both
wave equations simultaneously and satisfies the Maxwell equations, then it is
an EM wave.

1.6 Polarization of an EM wave

For now, assume that ~E (and ~B) waves are transverse (i.e., a transverse elec-

tromagnetic wave (TEM); not proven yet; see (Eq: 35)); i.e., ~E · k̂ = 0. Assume
the wave is traveling in the z direction. Then

~E = Ex(z, t)̂i+ Ey(z, t)ĵ (24)

Since Exî and Ey ĵ are themselves waves, then Ex and Ey both fit the form:

f(z, t) = A cos(k(z − ct) + δ) (25)

If δx = δy, then ~E is linearly polarized. If δx 6= δy, then ~E is elliptically

polarized. If δx 6= δy and Ex = Ey, then ~E is circularly polarized. We can also

write ~E as:
~E = E cos θî+ E sin θĵ (26)

and we call θ the polarization angle.

Polarization comes from the direction of acceleration of a charge, which will be
seen in the scattering section.

1.7 Plane waves

We can express a simple (real) cosine wave as its phasor equivalent:

~E = E0 cos(k(z − ct) + δ)n̂ = <
(
E0e

i(k(z−ct))
)
n̂ (27)

where E0 is a real constant in the cosine form, and a complex constant (including
the phase) in the phasor form, and n̂ is the unit vector in the direction of the
polarization. k is the wave number, and c is the speed of light.

Alternatively, we can express the phase as i(kz−ωt), recognizing that ω = kc.
(Also, c = ω/k, and k = ω/c.)
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More generally, if a wave is propagating in direction k̂ with wave number k,
we define the wave vector ~k and express the wave as

~E = <
(
E0e

i(~k·~r−ωt)
)
n̂ (28)

1.7.1 Plane wave derivatives

Let ~E be a plane wave. Then:

∂ ~E

∂t
= −iω ~E (29)

∇ · ~E = i~k · ~E (30)

∇× ~E = i~k × ~E (31)

In other words, we have correspondences between the differential operators and
multiplication (for plane waves). In particular:

∂

∂t
↔ −iω (32)

∇ ↔ i~k (33)

∇2 = ∇ · ∇ ↔ i~k · i~k = −k2 (34)

Thus, to prove that plane waves are transverse:

∇ · ~E = i~k · ~E = 0⇒ ~k ⊥ ~E (35)

(The same result is true for ~B.) To find the relative magnitudes of ~E and ~B:

∇× ~E = i~k · ~E = −∂
~B

∂t
= iω ~B ⇒ ~k × ~E = ω ~B (36)

∇× ~B = i~k · ~B =
1

c2
∂ ~E

∂t
= − iω

c2
~E ⇒ ~k × ~B = − ω

c2
~E (37)

Note that (Eq. 36) shows that ~B is also transverse since it results from a

cross product with ~E. The negative sign arises from a right-handed coordinate
system. Since ~k, ~B, ~E are mutually orthogonal, the cross products become the
products of the magnitudes, i.e.:

kE = ωB ⇒ B =
k

ω
E =

1

c
E (38)

Note that this factor of 1
c is meaningless; it is more or less a consequence of our

unit systems of ~E and ~B fields.
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2 Poynting vector

2.1 Energy density of E and B fields

Denote energy density with u. These equations were derived in E&M.

uE =
1

2
ε0 ~E · ~E =

1

2
ε0| ~E|2 (39)

uB =
1

2µ0

~B · ~B =
1

2µ0
| ~B|2 (40)

For an E&M wave, at any point in space and moment in time, uE = uB , so
total energy density is u = uE + uB = 2uE = 2uB .

2.2 Poynting vector

The Poynting vector points in the direction of (outward) energy flux. It can be
thought of as the energy density multiplied by a velocity.

~S =
1

µ0

~E × ~B (41)

To derive this, calculate the rate of change in energy density.

du

dt
=

∂

∂t

(
1

µ0

~B · ~B
)

=
1

µ0

∂ ~B

∂t
· ~B =

1

µ0
(−∇× ~E)· ~B = −∇·

(
1

µ0

~E × ~B

)
= −∇·~S

(42)
This makes sense from a conservation-of-energy perspective (this is called a
continuity statement):

du

dt
+∇ · ~S = 0 (43)

This statement can be read as: the rate of change of (internal) energy is equal
to the energy flux (or divergence, or rate of loss of energy).
Time-averaging the Poynting vector:

〈~S〉 =
1

T

ˆ T

0

1

µ0

~E × ~B dt =
1

Tµ0
E0B0

ˆ T

0

sin2[φ(t)] dt =
1

2µ0
E0B0

=
1

2
cε0E

2
0 k̂ (44)

where k̂ is the unit vector in the direction of the wave’s propagation. Since
〈u〉 = 1

2ε0E
2
0 , we obtain the “Suck” equation:

〈~S〉 = 〈u〉ck̂ (45)

This is as we interpreted at the beginning of this section: the energy flux is an
energy density being carried at the wave’s propagation speed. The units for this
are W/m2; the rate of energy flux penetrating some patch of closed loop in space.

Lastly, we define intensity as the magnitude of 〈S̄〉, i.e.,

I = |〈S̄〉| = 〈u〉c (46)

7



2.3 Energy density as pressure

It makes sense that packing more energy in a unit volume may seem to give it
more “pressure.” Working dimensionally, this also works:

P =
N

m2
=

N ·m
m2 ·m

=
J

V
= u (47)

This “light pressure” is theoretically able to be able to exert forces on objects,
but its applicability is only theoretical right now (see “solar sails”).

3 Radiation and scattering

After receiving an impulse from an EM wave, an electron radiates energy. We
only study Thomson (free electron) and Rayleigh (electron bound to an atom)
scattering, both of which are elastic scattering models.

3.1 Radiation

First, we talk about radiation due to an atom due to some acceleration. When
radiation comes into contact with matter, it may be reflected, refracted, ab-
sorbed, or scattered. In this section we will discuss scattering models only.

3.1.1 Setup and fundamental results

An electron is at rest at the origin. It is briefly accelerated (wlog., in the positive
x-direction) for a short interval of time τ , after which it moves at constant

velocity v � c. We create a model to examine its ~E field at time T � τ .
Since EM waves travel at the speed of light, the EM wave updates in ”rings”
propagating outward from the particle at c.

The first boundary is at radius R0 = cT ; outside of this circle, an observer
doesn’t know the particle has moved. Since the acceleration stops after τ , the
second important boundary is at RI = c(T − τ); inside this circle, an observer
sees the charge moving at a uniform speed. We make the approximation that
these two circles are centered at the origin, since τ � T .

Now, picture an ~E wave leaving the electron at angle θ. It travels in a
straight line until the first boundary. Outside of the second boundary, however,
an observer doesn’t know the electron has moved from the origin yet, however,
so the ray outside of the second boundary would be a straight line towards the
origin, also roughly at angle θ. Thus, in the region between these two boundaries
(where the information about the electron’s acceleration is currently reaching),
there is a “kink” in the electric field waves; we approximate this with a straight
line. We can also approximate the curvature of the two circles to be small in
this region, and assume them to be straight lines in the tangential direction.
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Now we have a “rectangle” with side lengths Ekinkr and Ekinkθ (since ~Ekink
is the diagonal). From the geometry and approximations given (now, let ~E =
~Ekink):

Eθ = vT sin θ

Er = cτ

Eθ
Er

=
vT sin θ

cτ

The following substitutions are also appropriate given the setup:

R = cT

a =
v

τ

From Coulomb’s/Gauss’s law for a point charge, we know that the radial ~E field
is also:

Er =
1

4πε0

q

R2
(48)

So we can rewrite Eθ as (using the appropriate substitutions):

Eθ =
qa sin θ

4πε0c2R
(49)

Note that, as R increases, ~Eθ dominates over ~Er (Eθ ∝ R−1, not R−2 like

radial ~E). Thus, for reasonable distances, is practically a transverse wave with
magnitude Eθ caused by an acceleration of the charge at the retarded time
−R/c. This ~Eθ is thus the ~E field of the radiated EM wave; we are not concerned
with the radial component. Using (Eq. 38), we have:

B =
qa sin θ

4πε0c3R
(50)

We can also find the Poynting vector associated with this EM wave. Using (Eq.
41), we can find the magnitude of the Poynting flux:

S =
q2a2 sin2 θ

16π2ε0r2c3
(51)

To recap, these are the magnitudes of the ~E, ~B, and ~S fields for the EM wave
radiated by a charge accelerated at some retarded time, where ~E and ~B are
in the tangential directions and mutually perpendicular, and ~S is in the radial
direction.
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3.1.2 Geometry of the radiation

The ~E, ~B, and ~S fields are clearly anisotropic (are a function of angle). Looking

at the ~S vector, we can see that the power radiated is proportional to sin2 θ,
and thus is sort of a weird donut-y shape. Specifically, in the direction of
acceleration, there is no radiation; in the perpendicular direction, there is the
maximum (“beaming”) with magnitude

S =
q2a2

16π2ε0r2c3
(52)

which can be clearly seen from (Eq. 51).

If the donut is sitting flat on a table, then the ~E vector is tangent to the sur-
face and points up or down; the ~B is tangent to the surface and points around
the donut. Since the orientation of the donut is dictated by the direction of
acceleration, the directions of ~E, ~B, and ~S are determined by the direction of
acceleration; this is where polarization comes from.

The region of no radiation will show up again later when encountering Brewster’s
angle.

3.1.3 Larmor power

To get the total radiated power (Larmor power), we integrate the Poynting
vector flux through some closed surface containing the charge. For simplicity,
choose a sphere (and integrate using cylindrical coordinates):

P =

ˆ π

0

(S)(2πr)(r sin θ)dθ =
q2a2

8πε0c3

ˆ π

0

sin3 θ dθ =
q2a2

6πε0c3
(53)

This is the power, or total energy loss by an accelerated charge (in Watts).

3.2 Thomson scattering

Thomson scattering is the model used for free electrons. Imagine an incident ~E
wave approaching a free electron, and the wave is traveling in the x̂ direction.
Let:

E = Ex = E0 cos(kz − ωt) = E0 cosωt

Then:

a = ax =
qE0

m
cosωt (54)

Plugging into (Eq. 53), we get:

P (t) =
q2a2(t)

6πε0c3
=

q4E2
0

6πε0m2c3
cos2 ωt
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Time averaging, we get:

〈P 〉scattth =
q4E2

0

12πε0m2c3
(55)

This is the Thomson scattering by a single electron due to an incident ~E wave
with amplitude E0. We may want to express this in terms of the incident power;
from (Eq. 44), we can do precisely this (and some simplifying) to obtain:

〈P 〉scattth =
8π

3

(
q2

4πε0mc2

)2

〈S〉inc (56)

Note that this equation works dimensionally: we have a power equal to some
area multiplied by a power flux. In particular, the quantity inside the parens is
a length and is called the classical electron radius, r0:

r0 =
e2

4πε0mc2
(57)

and this area is called the Thomson scattering cross-section:

σth =
8π

3
r20 (58)

So we can abbreviate the Thomson scattering using this new constant:

〈P 〉scattth = σth〈S〉inc (59)

Note that the scattering coefficient is intrinsic of the material and not of the
intensity of the light; that is, for a given scatterer, the scattered power is pro-
portional to the incident power flux.

3.2.1 Application: transmission through the Sun’s corona

We can model the Sun’s corona as a bunch of free electrons and protons. The
protons are much weaker scatterers (their σth value is much smaller due to their
larger mass), so we’ll ignore their contribution. The change in total power after
passing through a length dz through a portion of the Sun’s atmosphere is

dP = −Ad〈S〉 = NAdz σ〈S〉

where A is the cross-sectional area of interest (we can see this quickly cancels
out), and N is the number density of scatterers. The right hand side of this
equation comes directly from (Eq. 59) through NAdz electrons. Rearranging,
we get a simple ODE, to which the solution is

〈S〉 = 〈S0〉 exp(−Nσz) (60)

For the solar corona, we get 〈S〉 ≈ 0.99995〈S0〉, so very little of the Sun’s total
radiative power is scattered by its corona (and that is why it is so hard to see).
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3.3 Rayleigh scattering

Rayleigh scattering uses a mechanical “electron on a spring” model of the atom,
and is more accurate for electrons in matter. For simplicity, we can treat it in the
undamped case, and then move onto the damped case. We see that it is similar
to Thompson scattering: the radiated power is also proportional to the incident
power flux, except now the proportionality “constant” is frequency-dependent
(and thus not really a “constant”).

3.3.1 Setup and fundamental results

We treat the electron as an undamped spring with driving force qE0 cosωt,
similar to the original setup for Thomson scattering. However, the acceleration
is not as simple: we have the additional restoring force term. Luckily this is still
just a linear ODE that we can solve normally just like we would for a spring
mechanics problem:

m
d2x

dt2
+mω2

0x = qE0 cosωt (61)

Solving:

x =
qE0

m(ω2
0 − ω2)

cosωt (62)

Solving for acceleration, we can plug this back into (Eq. 53) to get the Larmor
power from Rayleigh scattering:

d2x

dt2
= a =

ω2

ω2 − ω2
0

qE0

m
cosωt (63)

Compare this to (Eq. 54); the only difference is the frequency term. Since
S ∝ a2, it can be seen from analogy to the derivation of Larmor power of
Thomson scattering that the Larmor power for Rayleigh scattering is

〈P 〉scattray =
8π

3

(
q2

4πε0mc2

)2(
ω2

ω2 − ω2
0

)2

〈S〉inc (64)

If we express the scattering terms as a single coefficient, we get

σray =

(
ω2

ω2 − ω2
0

)2

σth (65)

and then we can express Rayleigh scattering as the simple equation just like
(Eq. 59):

〈P 〉scattray = σray〈S〉inc (66)

3.3.2 Properties and results from frequency dependence

As ω0 goes to zero, then the restoring force becomes negligible, and thus it
should behave like a Thompson scattering. Indeed,

lim
ω0→0

σray = σth (67)
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On the other hand, for gases, ω0 � ω, and we can make the approximation:

〈P 〉scattray ≈
(
ω

ω0

)4

σth〈S〉inc (68)

This fourth-power means that higher frequencies are scattered much more strongly
than lower ones, and causes the phenomenon that blue light is scattered much
more strongly by the atmosphere, hence causing it to appear blue.

3.3.3 Resonance and damping

The undamped model doesn’t make sense, because it would imply extremely
unstable conditions when resonance occurs. Thus it makes sense to introduce a
damping term, making the original differential equation into

m
d2x

dt2
+mβ

dx

dt
+mω2

0x = qE0 cosωt (69)

The general equation for this is:

~x =
q

m((ω2
0 − ω2) + iγω)

~E (70)

This equation shows the movement of an electron relative to an atom; in other
words, it shows the displacement of charges, or the dipole moment. In a static ~E
field, then the driving frequency ω = 0, and there is an average dipole moment
in the same direction with magnitude:

〈~p〉 = q〈~d〉 = q〈~x〉 =
q2

mω2
0

〈 ~Eext〉 (71)

but we will not directly reference this solution to the undamped electron-on-a-
spring equation until (Sec. 7.1) on absorption, which will deal with electrons

responding to an incident ~E wave.

4 Dipoles and Potentials

We already know from integrating the ~E field that the electric potential is a
scalar field:

φE = −∇φE (72)

We will obtain the same for the “magnetic field strength”, the ~H (not yet
revealed).

φH = −∇φM (73)

For a point charge, φE is already known:

φE =
q

4πε0

1

r
(74)
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4.1 Dipoles and beyond

Electric dipoles are of interest because they are created when molecules distort
in an electric field. I.e., displacing a charge is equivalent to adding a dipole.
Define ~d as the vector from the vector from the negative charge to the positive
charge in a dipole. Also, define ~p, the dipole moment, to be

~p = q~d (75)

There are electric also monopoles, quadrupoles, octupoles, etc. They can be in
either a 3-D general form or a linear (axi-symmetric) form, but both have the
same potential magnitudes. For a monopole, the potential is proportional to
r−1; for a dipole, it is r−2; and so on. We deal primarily with the axi-symmetric
forms.

4.2 Potential of a dipole

We already know from E&M that to calculate the voltage at any point in space,
we add up the contributions from all of the charges (or poles). For a dipole, in
general, if we let ~r be the positional vector of the point of interest w.r.t. to the
center of the dipole, and define:

~r+ = ~r − 1

2
~d, ~r− = ~r +

1

2
~d

(i.e., r+ is the distance between the point of interest to the positive charge, and
likewise for r− and the negative charge) then:

φdip =
q

4πε0

(
1

r+
− 1

r−

)
(76)

From the definition of ~r+ and ~r−, we can represent r−1+ and r−1− as |~r − ~δ|−1,

where ~δ = ± 1
2
~d. We can rewrite this in three ways:

1

|~r − ~δ|
=


1
r − ~δ · ∇

(
1
r

)
+ · · ·

1
r

(
1− 2

(
δ̂ · r̂ δr

)
+ δ2

r2

)−1/2
1
r

∑∞
l=0

(
δ
r

)l
Pl(δ̂ · r̂)

(77)

where Pl is the lth Legendre polynomial. Note:

1. The former is the 3-D Taylor expansion.

2. The second is the law of cosines in the denominator.

3. The latter is a series expansion of the second. (Note that Legendre poly-
nomials result from performing Gram Schmidt orthonormalization on the
polynomial standard ordered basis (i.e., an orthonormal set created from
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{1, x, x2, x3, . . . }), so you can write any function as an expansion (linear
combination) of the Legendre polynomials by using the inner product of
the function with a Legendre polynomial as the coefficicent.)

Using the first two terms of the first representation, we can see that the potential
of a dipole is:

φE =
q

4πε0

(
1

|~r − 1
2
~d|
− 1

|~r + 1
2
~d|

)

≈ q

4πε0

([
1

r
+

1

2
~d · ∇

(
1

r

)]
−
[

1

r
− 1

2
~d · ∇

(
1

r

)])
=

q

4πε0

(
~d · ∇

(
1

r

))
=

1

4πε0r2
~p · r̂ (78)

This is the single-term approximation for a dipole moment, and it is clearly
proportional to r−2. However, there are more terms in the expansion, but this
approximation is considered good enough. This expression is not an approxi-
mation for a “point dipole”; i.e., if d→ 0 but ~p is finite (i.e., then q →∞).

4.3 Potentials inside/outside a distribution of charges

With the third representation from (Eq. 77), we may express potentials within
a net-neutral distribution of charges. For a point outside of the charge distri-
bution, then the potential can be expressed as:

φout =
1

4πε0

∞∑
l=0

Al
rl+1

Pl(cos θ) (79)

and inside the charge distribution, the potential can be expressed as:

φin =
1

4πε0

∞∑
l=0

Blr
lPl(cos θ) (80)

(Not sure how to derive these specifically. You can see the general pattern,
however, that outside the material, we involve positive coefficients of r−1; inside
the material we have nonpositive coefficients of r−1.) Generally, we have to solve
for the coefficients {Al} and {Bl} given some other constraint.

5 EM Fields in dielectric materials

The PDF at http://www.phys.nthu.edu.tw/~thschang/notes/EM04.pdf was
very helpful for this topic.
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5.1 The polarization and displacement fields

5.1.1 The polarization field

If we apply an ~E field on a dielectric material, then dipoles form. The net of
these molecular dipoles forms the polarization field, ~P :

~P = N〈~p〉 (81)

where N is the number density of the dielectric particles. This can be thought
of as a “dipole moment density.” This is also proportional to the applied ~E
field:

~P = ε0χE ~E (82)

where χE is the dielectric susceptibility (can be thought of as how willing a
substance is to polarizing; free space doesn’t polarize, so χE0

= 0). For this

course, we concern ourselves with linear material; i.e., ~D is directly proportional
to the applied ~E, or χE is a constant proportionality factor. (Real materials are
not always so simple.)

5.1.2 The displacement fields

The electric and polarization fields combine to form the displacement field ~D,
which is like the net dipole moment density:

~D = ε0 ~E + ε0χE ~E = ε0(1 + χE) ~E (83)

We define the relative permittivity κ as follows:

κ := 1 + χE (84)

and electric permittivity (of material) to be:

ε = κε0 (85)

(This gives the name “relative permittivity” meaning, as κ = ε/ε0.) Thus, with
these new definitions,

~D = ε ~E (86)

From an intuitive perspective, this means that the displacement field (think of
it as some sort of net electric field) is the applied electric field along with some
induced amount of electric field, the amount that is induced is dependent on
the material.

Taken directly from the notes: “Another way to think of the ~P field is in
terms of ‘bound charge density,’ ρb, where:

−∇ · ~P = ρb (87)

For example, in [a dipole distribution in which all ~p vectors point outwards

from a single point], ∇ · ~P 6= 0.” In other words, the negative of the divergence
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of the polarization field is the “bound charge density,” the net charge density
due to dipolar (thus bound) electrons. In this particular dipole distribution,
there is a net divergence, and thus ρbound 6= 0; intuitively, this makes sense
since if all of the dipole moments are pointing outwards, then there is a positive
polarization field divergence; also, the dipoles are slightly stretched, and the net
interior charge due to the dipoles is slightly negative (since the surface/boundary
charge is slightly more positive, and the total charge must be zero).

5.2 The ~H and magnetization fields

5.2.1 The ~H field

We define the field ~H (sometimes called the magnetic field strength field) as
a more primitive “magnetic” field, one that doesn’t rely on matter and is the
magnetic analog to the ~E field. This is because the ~B field that is often used is
actually more of an empirical measure traditionally used because we typically
see magnetic fields alongside matter, but this is analogous to the ~D field that
is a combination of some “driving,” more fundamental force ( ~E field) and its

response from matter (the ~P field).

5.2.2 The magnetization field

Similar to the polarization field, we have the magnetization field, ~M . Like
polarization, this is the net of the dipole moments of the individual particles;
unlike polarization, there are two types of magnetic dipole moments caused by
atoms.

First of all, we need to define the magnetic moment ~m:

~m = I ~A (88)

where I is some quantity of current, and ~A is a vector with magnitude the
area or the surface enclosed by the loop and direction normal to the surface
enclosed by the loop (similar to angular momentum). This can be applied both
to electron orbits (if we consider the electron to be traveling in the classical
sense of “orbiting” the nucleus), or in the quantum-mechanical sense of electron
“spin.”

The magnetization field is the bulk of the average magnetic fields:

~M = N〈~n〉 (89)

Like the polarization field, it should be proportional to the magnetic field
strength (assuming linear material):

~M = χM ~H (90)

where χM is the magnetic susceptibility (the same conclusions can be drawn as
for the electric susceptibility). Note the slight asymmetry from the polarization
field: there is no multiplication by µ0 here.
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5.2.3 Revisiting the magnetic field

We provide a more precise formulation of the ~B field analogous to that of the
displacement field:

~B = µ0
~H + µ0

~M = µ0(1 + χM ) ~H (91)

If we define the magnetic permeability of dielectric material:

µ = µ0(1 + χM ) (92)

(Note that for many materials, µ ≈ µ0, so this is a valid approximation.) Then

the equation for ~B simplifies to:

~B = µ ~H (93)

fitting a simple linear relationship analogous to the displacement field (assuming
linear material).

5.2.4 Categories of magnetic materials

We can generally classify materials into one of three categories:

Paramagnetic: µ > µ0, χM > 0. Thus the magnetization occurs in the same
direction as the imposed ~H field. This is due to a dominating magnetic
moment caused by electron spin (i.e., many half-full orbitals). E.g., O2,
Al.

Diamagnetic: µ < µ0, χM < 0. Thus the magnetization opposes the ~H field.
This is due to small contribution to magnetic moment due to electron
spin (i.e., mostly full orbitals), and thus the electron “orbits” around the
nucleus dominate the magnetic moment. E.g., H2O, N2, Cu.

Ferromagnetic: µ � 1 (not really a subset of paramagnetic because of its
more extreme properties). This is due to more complex (nonlinear) mate-
rial, i.e., µ = µ(H), above some critical temperature (the “curie temper-
ature” Tcurie). These exhibit hysteresis (can be interpreted as “memory”

or “delay” in their response to changes in the ~H field). E.g., Fe (hence
the name), Ni, Fe3O4.

5.3 Maxwell equations in material

Rearranging (Eq. 1), which still holds in material, we get:

∇ · ε0 ~E = ρ (94)

Noting that ε− ε0 = ε0χE , we get:

∇ · (ε− (ε− ε0)) ~E = ∇ · (ε ~E)−∇ · (ε0χE ~E) = ∇ · ~D −∇ · ~P = ρ (95)
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Noting that ρ consists of “free charge” ρf (free electrons and those in conducting
material, which conduct current when an electric field is applied) and “bound
charge” ρb (from dielectric dipoles), then:

ρ = ρf + ρb (96)

A hand-wavy proof of the Maxwell equation for the divergence of ~D in matter
says that if the bound charge density comes from the divergence of the polar-
ization field (dielectrics), then the free charge density is from the divergence of
the displacement field (credit to https://em.geosci.xyz/content/maxwell1\

_fundamentals/formative\_laws/gauss\_electric.html). (This isn’t really
a proof, but this result is true.) Then we get the following two equations:

∇ · ~D = ρf (97)

−∇ · ~P = ρb (98)

The former becomes our first Maxwell equation in material; the latter is another
way to arrive at (Eq. 87).

The rest of the Maxwell equations are mostly the same, but can be rewritten
using the constituent equations. We can assume that there are no free charges
in dielectric material, so the Maxwell equations in dielectric material:

∇ · ~D = ρf = 0

∇ · ~H =
1

µ
∇ · ~B =

1

µ
(0) = 0

∇× ~E = −∂
~B

∂t

The induction law is a little more complicated; see http://www.oceanopticsbook.
info/view/radiative_transfer_theory/level_2/maxwells_equations_in_

matter for a more in-depth explanation (it involves looking at the free, bound,
and polarization currents); for our purposes, we can just think of it as an ex-
tension of the vacuum equation, replacing permittivity and permeability of free
space with their material counterparts (this again assumes no free current):

∇× ~B = µ∇× ~H = µε
∂ ~E

∂t
= µ

∂

∂t
(ε ~E)⇒ ∇× ~H =

∂ ~D

∂t

Summary of equations and constituent relations (in linear dielectric material
with no free charge):

∇ · ~D = 0 (99)

∇ · ~B = 0 (100)

∇× ~E = −∂
~B

∂t
(101)
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∇× ~H =
∂ ~D

∂t
(102)

~D = ε ~E (103)

~B = µ ~H (104)

This set of equations is more symmetric between the electric and magnetic fields,
with the introduction of the “underlying” ~H field and “overlying” ~D field. To
complete the picture, these cause some “response” in dielectric matter (the size

of the response depends on the material’s susceptibility), which are the ~M and
~P fields; combining the fundamental and material response fields leads us to the
~B and ~D fields.

As expected, these simplify to the vacuum Maxwell equations when in a
vacuum, since the “response” fields are zero since the susceptibility of free space
is zero.

A straightforward application of these new relations is to show another rep-
resentation of the Poynting vector, which also nicely more symmetric once we
only involve the fundamental fields:

~S =
1

µ
~E × ~B = ~E × ~H (105)

We will revisit the Maxwell relations in material, with the possibility of free
charges and current, in the last section (Sec. 7.2).

5.4 Interface conditions

For these, we show the more general forms and the less general ones.

5.4.1 Pillbox approach for flux

We approach the first two Maxwell equations. First, don’t assume no free charge.
Imagine a small “pillbox” (or other prism) straddling the interface between two
materials, the first with permittivity ε1 and the second with permittivity ε2,
with its two flat ends (locally approximately) parallel to the interface, one flat
end in each material, and the sides of pillbox of infinitesimal length. The total
~E flux through this surface is almost all from the two parallel interfaces, since
the area of the sides is negligible, and all of it is normal to the interface.

For the displacement field, we have the general form (Eq. 97). Assuming n̂
is the unit normal vector pointing from material 1 to material 2, the net flux
through this is

∇ · ~D = n̂ · ~D2 + (−n̂) · ~D1 = n̂ · ( ~D2 − ~D1) = ρf (106)

Since this pillbox is essentially on the boundary of the material, this free charge
is not actually the free charge volume density, but rather the free charge surface

20



density, σf , so this may rewrite this as:

n̂ · ( ~D2 − ~D1) = σf (107)

Of course, assuming no free charge (as we do for this course), σf = 0, so:

n̂ · ( ~D2 − ~D1) = 0 (108)

This means that the normal component of the ~D field is continuous across a
boundary (when there is no free charge), or that:

~D⊥1 = ~D⊥2 (109)

ε1 ~E
⊥
1 = ε2 ~E

⊥
1 (110)

The same pillbox method can be used to obtain analogous relations for ~B across
an interface (but this holds whether there is free charge or not):

~B⊥1 = ~B⊥2 (111)

µ1
~H⊥1 = µ2

~H⊥2 (112)

5.4.2 Loop approach for curl

We can create a similar setup to the pillbox method, but instead of a pillbox,
we have a rectangular loop: two sides (locally approximately) parallel to the
surface, and the two other sides perpendicular to the surface and infinitesimally
long. In a similar way to the pillbox method, we find the curl around the loop,
neglecting that caused by the normal components, and apply Stoke’s Theorem
on (Eq. 101):

‹
A

(∇× ~E) · d~s =

˛
C

~E · d~l = −
‹
A

∂ ~B

∂t
· d~s (113)

This essentially transforms it back into the integral form. Since as we take the
limit of the sides normal to the interface as their length goes to 0, the limit of
the area goes to zero, so the enclosed ~B flux also goes to zero (the right side

of the equation). The curl of ~E (the left side of the equation) is the sum of

the ~E tangential to the interface in opposite directions; this magnitude of the
tangential field can be expressed as n̂× ~E. Thus:

n̂× ~E2 + (−n̂)× ~E1 = n̂× ( ~E2 − ~E1) = 0 (114)

This means that the tangential part of the ~E field is continuous. The same
result can be shown for ~H fields using the fourth Maxwell equation; this gives
us the following tangential interface conditions:

~E
‖
1 = ~E

‖
2 (115)
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1

ε1
~D
‖
1 =

1

ε2
~D
‖
2 (116)

~H
‖
1 = ~H

‖
2 (117)

1

µ1

~B
‖
1 =

1

µ2

~B
‖
2 (118)

5.4.3 Example: refraction of a (steady) electric field

These boundary conditions describe how static fields act near boundaries; this
describes refraction. If α describes angle from the normal of an ~E field vector
as near a horizontal interface, then from the normal and tangential matching
conditions, respectively, we have:

ε1E1 cosα1 = ε2E2 cosα2 (119)

E1 sinα1 = E2 sinα2 (120)

Combining these two:
tanα1

ε1
=

tanα2

ε2
(121)

6 Reflection and transmission

This section is an application of the boundary conditions derived in the previous
section, but now we apply it to plane waves (as opposed to static fields). We
deal first with the simpler case of normal incidence (when the wave vector is
normal to the interface) and then extend the results to oblique incidence.

6.1 Index of refraction, propagation speed, and impedance

From the Maxwell equations in material, we get:

v =
ω

k
=

1
√
µε

(122)

Which is an extension of the vacuum case (clearly, this agrees with the vacuum
case since v = c if µ = µ0 and ε = ε0). The index of refraction is defined as the
ratio of c to v:

n =
c

v
=

1√
µ0ε0
1√
µε

=

√
µε

µ0ε0
≈
√

ε

ε0
=
√
κ (123)

Usually, n > 1, but it is possible to have n be less than unity: see https://en.

wikipedia.org/wiki/Refractive_index#Refractive_index_below_unity. Now,
define the impedance Z of a material to be:

Z =

√
µ

ε
(124)
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Note that this has units of electrical resistance (“impedance”). Plugging this

into (Eq. 38), we can rewrite the relationship between ~B and ~E as:

E =
ω

k
(µH) =

µ
√
µε
H = ZH (125)

and thus we can rewrite Z as:

Z =
E

H
(126)

Also, note that Z is inversely proportional to n (and thus directly proportional
to v). (It may be a little counterintuitive that a higher impedance corresponds
to a higher wave speed; this can be thought of like in a string wave, in which a
wave moves faster the tauter the string is (which can be thought of as having a
higher “impedance”)).

Z =

√
µ

ε
=

√
µ

ε

µ

µ
=

√
µ2

µε
= µv = µ

c

n
⇒ Z ∝ n−1 (127)

6.2 Fresnel equations

(For this section, refer to the notes for diagrams.)
There are two polarization cases: the first, s-polarization (a.k.a., TE, trans-

verse electric), when ~E is parallel to the interface (and normal to the incidence

plane); and p-polarization (a.k.a., TM, transverse magnetic), when ~E is in the
incidence plane. This is the general oblique case, for which normal incidence
can be derived when θi = 0.

Note that while s- and p-polarization are specific polarization cases, they are
orthogonal and span the polarization plane (which is two-dimensional); thus,
any EM wave with any polarization can be represented as a linear combination
of the two. Also, there are a few assumptions made about the directions of the
reflected and transmitted waves that are not explained; these are due to solving
all of the interface conditions simultaneously.

Setup: the interface is the (horizontal) plane z = 0, the incidence plane is
the plane x = 0. The incident wave has a wave vector aimed toward the origin
from the second quadrant of the y-z plane, i.e.,

~ki = ki sin θiŷ − ki cos θiẑ (128)

~kr = kr sin θrŷ + kr cos θr ẑ (129)

~kt = kt sin θtŷ − kt cos θtẑ (130)

Note that all three vectors lie in the incidence plane; see (Sec. 6.2.2).
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6.2.1 s-polarization case

In this case, ~E vectors are normal to the plane of incidence (“s” for “perpendicu-

lar” (in German)), and ~B vectors lie in the plane of incidence, with ~Bi pointing

NE, ~Br pointing SE, and ~Bt pointing NE. Assume ~Ei and ~Et point into the
sheet of paper, and ~Er points out of the sheet of paper.

(N.B. These signage decisions are arbitrary but important to keep consistent

through a proof; note that we keep right-handed triads of ~E and ~B consistent,
and thus their magnitudes can go negative as long as the signs of the ~E and
~B vectors match: i.e., Ex/|Ex| = Bx/|Bx|. [In this orientation, as θi = 0,

the signs of ~Ei and ~Er are opposite, which is consistent with the setup for the
normal case; we could have changed the orientation so that ~Ei and ~Er would
be in the same direction if θi = 0, but the magnitude would be inverted. Either
way, it makes no difference to the reflection or transmission (power) coefficients,
which are the square of the magnitudes of the reflected and transmitted waves,
respectively.] However, note that we are asserting that these are the orientations

of the reflected and transmitted ~E and ~B vectors (i.e., that the ~E waves stay

parallel to the plane of incidence and that the ~B waves stay in the plane of
incidence) without proof, and using these to solve for the magnitudes assuming
they’re in this orientation. I have no idea how to prove that these are the correct
orientations (and can’t seem to find it online), but assume it is some problem
of simultaneously solving all of the boundary conditions at once (including the
normal ones, which we don’t deal with here), and/or some calculus/optimization
problem.)

Then, on the boundary:

~Ei = ~Ei0e
i(yki sin θi−ωit) (131)

~Er = ~Er0e
i(ykr sin θr−ωrt) (132)

~Et = ~Et0e
i(ykt sin θt−ωtt) (133)

Note here that ~k · ~r simplifies to only having a ŷ component, since kx = 0 and
z = 0 (on the boundary). Then, apply the tangential boundary conditions:

~E
‖
i + ~E‖r = ~E

‖
t (134)

~H
‖
i + ~H‖r = ~H

‖
t (135)

In the case of s-polarization, the ~E vectors are already parallel to the plane, but
the ~B are not. Thus, for s-polarization, we can write these more concretely as:

−Ei0ei(yki sin θi−ωit) − Er0ei(ykr sin θr−ωrt) = −Et0ei(ykt sin θt−ωtt) (136)

Hi0 cos θie
i(yki sin θi−ωit) +Hr0 cos θie

i(ykr sin θr−ωrt) = Ht0 cos θie
i(ykt sin θt−ωtt)

(137)
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6.2.2 The laws of reflection and refraction

We make the observation that this set of equations must be true for all moments
in time and all points in space. Thus, at any given point in space, in order to
satisfy both boundary equations, all of the time terms must factor out. In other
words, two sinusoids cannot sum to another sinusoid unless their frequencies are
equal, and the sum sinusoid must have the same frequency. Thus they must all
be oscillating at the same rate in time:

ei(−ωit) = ei(−ωrt) = ei(−ωtt) ⇒ ωi = ωr = ωt (138)

Note that since this is a simple result of sinusoid math and does not involve
the boundary conditions, it is true not only for EM waves, but other waves at
boundaries (e.g., waves on a string). By the same logic, we can also deduce that
the oscillations in space must also be due to an equal space-phase:

eiyki sin θi = eiykr sin θr = eiykt sin θt ⇒ ki sin θi = kr sin θr = kt sin θt (139)

Since k = ω/v, and we know from (Eq. 138) that ωi = ωr, and vi = vr = v1
since waves travel at one speed through the one medium dependent on its index
of refraction, then ki = kr = k1. (Thus, it makes sense to define k2 := kt, and
θ2 := θt.) This allows us to draw two conclusions (both of which are general to
waves at an interface, again without the EM boundary conditions). Firstly, the
law of reflection:

θi = θr(:= θ1) (140)

and then the law of refraction (Snell’s law)

k1 sin θ1 = k2 sin θ2 (141)

6.2.3 Aside: ~k lying in the incidence plane

With these relations and this logic, we can now show that all of the ~k vectors
lie in the incidence plane. We assumed that krx = ktx = 0; for now, assume

they are not. Then, assuming that ~kr and ~kt lie ψr and ψt off of the normal axis
(and off the incidence plane) in the x̂-direction, the space-phase component φs
of the three vectors are:

φis = iyki sin θi

φrs = ikr(y sin θr + x sinψr)

φts = ikt(y sin θt + x sinψt)

By the same logic as above, these three space-phases must be equal at all points
in the x̂ and ŷ directions at any point in time (the same logic applies for the
periodicity of the x̂ and ŷ dimensions in a complex sinusoid as it does for the t
dimension). Thus these must work when x 6= 0 and y = 0, in which case setting
all of the equations equal yields:

0 = x sinψr = x sinψt (142)

Thus forcing sinψ = 0, so ~k must lie on the incidence plane.
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6.2.4 Results of the s-polarization case

With the law of reflection and refraction, our boundary conditions get simplified
to:

−Ei0 + Er0 = −Et0 (143)

Hi0 cos θ1 +Hr0 cos θ2 = Ht0 cos θ2 (144)

Some magic/algebra happens here. . . We obtain the s-polarization reflectivity
and transmission (amplitude) coefficients:

rs =
Er0
Ei0

= −
cos θi −

√(
n2

n1

)2
− sin2 θi

cos θi +

√(
n2

n1

)2
− sin2 θi

(145)

ts =
Et0
Ei0

=
2 cos θi

cos θi +

√(
n2

n1

)2
− sin2 θi

(146)

6.2.5 p-polarization case setup and results

In this case, the ~E fields lie in the plane of incident (“p” for “parallel” (also

in German)). Imagine that the ~k vectors are situated the same way, all three
~B vectors point straight out of the page toward you, and ~Ei points in the NE
direction, ~Er points in the NW direction, and ~Et points in the NE direction.
Keep in mind the N.B. from the s-polarization section. Again, we use the
tangential boundary conditions; here, ~B is already tangential to the interface,
but ~E is not. The results are very similar (including the law of reflection, law of
refraction, and the wave vectors in the plane of incidence), so we will skip much
of the algebra and skip to the results. We have the p-polarization reflectivity
and transmission (amplitude) coefficients:

rp =
Er0
Ei0

= −

(
n2

n1

)2
cos θi −

√(
n2

n1

)2
− sin2 θi(

n2

n1

)2
cos θi +

√(
n2

n1

)2
− sin2 θi

(147)

tp =
Et0
Ei0

=
2n2

n1
cos θi(

n2

n1

)2
cos θi +

√(
n2

n1

)2
− sin2 θi

(148)

6.3 Normal incidence Fresnel equations

We can derive these simply from the more complex oblique cases derived above.
The orientations match the limit of the orientations for both the s- and p-
polarization case; i.e., the ~Er is antiparallel to ~Ei and ~Et; and all of the ~Bs are

26



parallel and pointing in the same direction. With θi = 0, the two polarization
cases converge to the same result. We have the normal case reflectivity and
transmission (amplitude) coefficients:

r⊥ =
n2 − n1
n2 + n1

=
Z1 − Z2

Z1 + Z2
(149)

t⊥ =
2n1

n2 + n1
=

2Z2

Z1 + Z2
(150)

The relation to Z is due to (Eq. 127). What this means is that if the index of
refraction of material 2 is greater than that of material 1 (or, alternatively, if the
impedance of material 1 is greater than that of material 2), then the reflected
~E will be antiparallel; and vice versa. If the materials have the same index of
refraction, then there will be zero reflection and total transmission (this is called
impedance matching). The transmission, however, will always be parallel to the
incident wave.

6.4 Reflection and transmission power coefficients

We can define the reflection and transmission power coefficients:

R :=
〈~Sr〉 · n̂
〈~Si〉 · n̂

(151)

T :=
〈~St〉 · n̂
〈~Si〉 · n̂

(152)

In other words, R and T are the power flux coefficients. Extending (Eq. 44) to
use ε and µ, we have:

〈~S〉 =
1

2Z
E2

0 k̂ (153)

and thus R and T can be simplified to (using Snell’s law and the fact that
Zi = Zr 6= Zt):

R =

∣∣∣∣Er0Ei0

∣∣∣∣2 (154)

T =

∣∣∣∣Et0Ei0

∣∣∣∣2 n2 cos θ2
n1 cos θ1

(155)

6.5 Evanescent waves

We define the critical angle to be:

θcrit := sin−1
(
n2
n1

)
(156)

When θi < θcrit, then the transmitted amplitude coefficient t is real. When
θi = θcrit, then there is no transmission t = 0 and total internal reflection
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(r = 1). However, when θi > θcrit, then r ∈ C (but |r| = 1 and t = 0, so it is
still total internal reflection). This in and of itself is not very revealing, so just
let the math speak for itself.

~Et = ~Et0e
i(ωt−k2(y sin θ2+z cos θ2)) (157)

Making the substitutions (cosine identity, Snell’s law, definition of critical angle)
and the fact that sin θ1 > sin θcrit:

cos θ1 = ±
√

1− sin2 θ1 (158)

sin θ2 =
n1
n2

sin θ1 (159)

n2
n1

= sin θcrit (160)

then we can rewrite the transmitted ~E wave as:

~Et = ~Et0e
−k2z

√(
sin θ1

sin θcrit

)2
−1
eiωt−ik2y

n2
n1

sin θ1 (161)

Note here that the wave number k (what is being dotted with the position
vector) becomes complex; the complex part gets multiplied with i again in the
exponent to become real. (This will come up again in the next two topics.) We
can define the folding distance z0 to be:

z0 =
1

k2

√(
sin θ1

sin θcrit

)2
− 1

(162)

(in general, the folding distance is z0 s.t. the solution has an exp(z/z0) coeffi-
cient) and trivially solve for the velocity and wave number of this wave:

v =
ω

k2

(
n1

n2

)
sin θ1

(163)

k = k2

(
n1
n2

)
sin θ1 (164)

to rewrite this wave as:
~Et = ~Et0e

− z
z0 eik(y−vt) (165)

This is an electric wave traveling parallel to the interface with exponentially-
decreasing magnitude the further you get away from the interface. This is called
the “evanescent wave,” and it is traveling in the denser material 2, which is now
called the “forbidden region.” If you get very close to the surface, then you
can detect or interact with this wave; this is called “frustrated total internal
reflection” (FTIR); otherwise, this energy just travels next to the surface and is
not lost. In the case of FTIR, then the reflection is not total; even though the
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wave is hitting the interface at an angle greater than the critical angle, this is a
way to still transmit (lose) energy across the interface.

It is also sometimes referred to as “evanescent wave coupling,” as mess-
ing with the evanescent wave will change the totality of the reflection, and is
analogous to a quantum-mechanical phenomenon (quantum tunneling of wave
functions; according to Wikipedia).

6.6 Brewster’s angle

Now that we’ve found the case for zero transmission (θ = θcrit) and zero-ish
transmission (θ > θcrit), what about the case for zero reflection? r = 0 only
occurs in the p-polarization case:

rp = 0⇒
(
n2
n1

)2

cos θ1 =

√(
n2
n1

)2

− sin2 θ1 (166)

Define the angle that satisfies this relation to be Brewster’s angle, θB :

θB := tan−1
(
n2
n1

)
(167)

At this angle, the angle between k̂r ⊥ k̂t. This geometry is relevant; the zero
transmission is due to the anisotropic nature of the Larmor power radiation;
at this angle of incidence, electrons will accelerate in a motion parallel to k̂r
and normal to k̂t, thus not radiating any in the direction of the reflected wave.
This won’t happen in the s-polarization case since the ~E wave is parallel to the
interface, and thus will be accelerating electrons back and forth in the interface
plane, so the region of no radiation will be in the interface plane and thus cannot
be in the direction of the reflected wave.

In the case of random polarization (a mix of s- and p-polarization) hitting
a surface at Brewster’s angle, this means that the reflected light will be s-
polarized and the transmitted light will be p-polarized; this can be used as a
simple polarization filter and has its applications with camera glare (if the light
reflected from a surface is heavily s-polarized, then blocking out that polarization
of light will greatly reduce the reflection (glare) from that surface while affecting
less of the randomly-polarized light from other materials).

7 Absorption and dispersion in dielectrics

In dielectrics, we will derive a frequency-dependent index of refraction, n. This
means that light waves at different frequencies will move at different speeds
through a material, and will reflect/refract differently; e.g., a rainbow or white
light going through a prism are examples of dispersion. This is closely related to
another phenomenon, absorption; we will see that with complex n values, there
is some absorption of light in matter; because of dispersion, different frequencies
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cause different n values, which in turn cause differing amounts of absorption,
which lead to our concept of the color of materials based on the intrinsic prop-
erties of the material (the fundamental frequencies of its molecules).

7.1 Improved spring model

Recall that the moment of a dipole is:

~p = q~d (168)

and recall that in a dielectric material, ~d (charge separation) is represented by
the motion of an electron on a spring, which is dependent on the fundamen-
tal frequency of the charge. In the previous spring model, we assumed that a
particle only has one fundamental frequency. Let us consider all of the funda-
mental frequencies of an atom, represented by some distribution; let i denote the
number of different characteristic frequencies of an atom, ~pi denote the dipole
moment of the i-th frequency of an atom, and fi be the fraction of electrons
within that atom with that fundamental frequency (i.e., fi = f(ωi0) is the p.m.f.
of the fundamental frequencies). Then the polarization field may be generalized
to the bulk polarization of this sum of dipole moments (contrast this with (Eq.
81)):

~P =
∑
i

Nfi~pi (169)

We have already solved for the solution for a single electron, and this more
general case is simply the sum (recall that ~p = q~x, since the displacement of an
electron is equal to its dipole moment):

~P =
∑
i

Nfiq
2

m((ω0i − ω)2 + jγiω)
~Einc (170)

(Here we switch the convention to representing the pure imaginary number as
j =
√
−1 to avoid confusion with the indexing variable.) For linear dielectric

materials, we can rearrange (Eq. 82) to get:

χe =
~P

ε0 ~E
(171)

We also know from (Eq. 123) that n =
√
κ and from (Eq. 84) that κ := 1 +χe,

so we can solve for n:

n2(ω) = 1 +
1

ε0

∑
i

Nfiq
2

m((ω0i − ω)2 + jγiω)
(172)

Thus, n is the square root of a complex number and is thus itself complex (we
ignore the technicalities of there being two square roots, just focus on one). Since
n = c

ωk, and c and ω are real constants (don’t know how to interpret complex
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speed or frequency), this means that k is also complex. In particular, we see
that for an EM wave passing through dielectric material, the amplitude of the
wave decreases exponentially with distance if k has an imaginary component:

~E = ~E0e
−=(~k·~r)ei(<(

~k·~x)−ωt) (173)

In other words, the real part of the wave number is like the ordinary wave
number (the “space-frequency” of the wave), while the imaginary part represents
damping (this is seen in the evanescent wave case; the wave number in that case
is complex). Thus, if we wanted to solve for the damping coefficient, we could
solve for =(k):

=[k(ω)] =
ω

c
=[n(ω)] (174)

We can see from the equation for n(ω) that if (ω0i−ω)2 � 0, then the numerator
and denominator are mostly real (and positive), and the resulting n2(ω) is
mostly real. However, as ω0i − ω → 0, then we have a real numerator divided
by a mostly imaginary denominator, resulting in an imaginary quotient (and
thus larger damping). Thus, we have damping (absorption) that is largest at
the fundamental frequencies of the atom.

The frequencies that correspond to absorption peaks (peaks of =(n) and
=(k)) then correspond to our idea of color: the stronger the absorption, the
weaker the reflection of any particular frequency of light.

7.2 A better model: ~Esite and the Clausius-Mossotti rela-
tion

Note that the previous equation for n works best for gases and other sparse
dielectrics, since in denser materials we have external contributions from the
~p of other molecules; this model (i.e., the solution to the damped oscillator)

assumes that the primary driving force is some external oscillator ~Eext wave. A
better model takes into account the imposed electric field. We define the electric
field in a hole (vacuum) surrounded by uniform dielectric material as ~Esite.
Dependent on the shape and orientation of the hole, the boundary conditions
cause the imposed ~Eext field to be different. For example, in a long thin slot
parallel to the ~Eext field, then:

~Esite ≈ ~Eext (175)

Since the dominating boundary is parallel to the ~Eext and ~P fields, there is
almost no polarization field lines. If the slit is in the plane normal to the ~Eext
field, then the polarization field is strong everywhere in the narrow slit:

~Esite ≈ ~Eext +
1

ε0
~P (176)

In a spherical hole (a result we won’t derive):

~Esite ≈ ~Eext +
1

3ε0
~P (177)
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This is a better approximation for the actual external (driving) ~E field on an
atom in a dielectric material. Using this result, we obtain the Clausius-Mossotti
relation to more accurately calculate n (implicitly) in denser dielectric material:

n2 − 1

n2 + 2
=

Nq2

3ε0m

∑
i

fi
(ω0i − ω)2 + jγiω

(178)

8 EM waves in conductors

8.1 Free charges and currents in Maxwell equations

We have dealt with dielectric material for a long time, and been able to make
assumptions such as that ρf = ~jf = 0, which simplified the Maxwell equations.
However, in conductors, this is not true anymore. In general, we can express
current in this version of Ohm’s law (i.e., integrating this over space gives us
Ohm’s law):

~jf = σ ~E (179)

where σ is the conductance of a material (inversely proportional to resistance).
The full Maxwell equations are in effect here (these were all stated previously in
(Sec. 5.2.4), except we the current component of Ampere’s law was disregarded
because of no free charges in dielectrics):

∇ · ~D = ρf (180)

∇ · ~H = 0 (181)

∇× ~E = −∂
~B

∂t
(182)

∇× ~H = σ ~E +
∂ ~D

∂t
(183)

We can start with the continuity equation (local conservation law) for charges
(this is similar to any other conservation law, such as that for power flux/energy
(Eq. 43)):

∂ρf
∂t

+∇ ·~jf = 0 (184)

and, by substituting Ohm’s law and the general form of Gauss’s electric law, we
obtain:

ρf (t) = ρf0 exp
(
−σ
ε
t
)

(185)

where ρf0 = ρf (0). Thus any free charge density in a conducting material
will dissipate at an exponential rate, with the time constant τ = ε/σ being
inversely proportional to the material’s conductance and directly proportional
to its permittivity. For good conductors with high conductivity, τ ≈ 10−19,
so charges dissipate very quickly. Because of this, we can approximate that
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ρf ≈ 0 at any moment of time in a conductor, so we can leave the first Maxwell
equation for conductors as we have seen it:

∇ · ~D ≈ 0 (186)

8.2 Dispersion relation

We can solve for the wave equation like we did earlier in the semester:

∇× (∇× ~E) = −∇× ∂ ~B

∂t

∇(∇ · ~E)−∇2 ~E = − ∂

∂t

(
µσ ~E + µε

∂ ~E

∂t

)

∇2 ~E = µσ
∂ ~E

∂t
+ µε

∂2 ~E

∂t2
(187)

The same form can be derived for ~B (or ~H). If we substitute the general form
for a plane wave solution:

~E = ~E0e
i(ωt−~k·~r+φ0)

into this differential relation for ~E, then by our rules of differential operators on
plane waves (Sec. 1.7):

−k2 ~E = µσ(iω) ~E + µε(−ω2) ~E

k2 = µεω2 − iµσω (188)

This is a disperson equation: from Wikipedia, “a dispersion relation relates the
wavelength or wavenumber of a wave to its frequency.” Here we have again a
complex wave number, just like in the case for the evanescent wave and imag-
inary wave numbers in dielectrics. (Note that as σ → 0, then k = <(k), and
we approach the simple real k case.) Similarly, this means that we have damp-
ing/absorption in a metal, and as before folding distance is:

z0 =
1

=(k)
(189)

(This particular folding distance is called the “skin depth” of a conductor.)
Since =(k) is small, then the skin depth is usually pretty short, which means
that the EM fields inside of a conductor are near zero (which agrees with our
assumptions/observations last semester in PH213).
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8.3 Additional notes: phase shifts and reflectivity

Also note that, for complex wave numbers, there is an additional phase shift
between ~E and ~B, which does not occur in the real case. In particular, if
we write ~k as a complex vector

(
|k|ei arg k

)
k̂ with Faraday’s law applying our

differential operators:

∇× ~E = −∂
~B

∂t

−i~k × ~E = −i
(
|k|ei arg k

)
k̂ × ~E = −iω ~B

|k|k̂ × ~E = ω ~Be−i arg k (190)

This means that k̂× ~E is equal to some phase-shifted ~B. (Again, this is also the
case for evanescent and dielectric damping, but we choose to introduce it here,
as it is not as important as previous results.)

A final comment is that with free charges, we may also have surface free
charges and surface free currents. In this case, a good conductor has a very
high reflection coefficient, which makes it a good reflector (mirror). (Not derived
here but involves rewriting boundary conditions involving Ampere’s law with
free currents.)
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