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1 Sets

This can be seen as a boolean algebra (S,∪,∩, ¯ ,∅, U).

1.1 Properties

• Involution: ¯̄A = A

• Absorption: A ∪ (A ∪B) = A ∪B, A ∩ (A ∩B) = A ∩B

• Bound: A ∪ U = U , A ∩∅ = ∅

• Idempotent: A ∪A = A, A ∩A = A

• Complement: A ∪ Ā = U , A ∩ Ā = ∅
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• Identity: A ∪∅ = A, A ∩ U = A

• (Distributive law both ways)

• 0/1: ∅̄ = U , Ū = ∅

• De Morgan’s: Ā ∪ B̄ = A ∩B, Ā ∩ B̄ = A ∪B

A collection S of nonempty subsets (i.e., S is a set of sets) of X is said to
be a partition of X if every element in X belongs to exactly 1 member o S (i.e.,
S pairwise disjoint, but ∪iS = X).

If X and Y are sets, define the Cartesian product X × Y = {(x, y) : x ∈
X, y ∈ Y }.

2 Relations

Define ∅ = R ⊆ X×Y to be a relation from X to Y (any nonempty subset of the
Cartesian product). If from a set to itself, call it a relation on X. Dom(R)) ⊆ X
set of elements x ∈ X s.t. (x, y) ∈ R; the analogous definition also exists for
Range(R). The inverse is the set R−1 = {(y, x) : (x, y) ∈ R} ⊆ Y ×X.

Can define function composition, R2◦R1 is R2 composed with R1. A relation
is a function if Dom(R) = X, and if it is injective.

Injective, surjective, bijective.
Binary and unary operators.
Denote operators on elements of sets with (S, op). (E.g., (R,+)).
Can represent a relation on a set with a digraph.

2.1 Classifications of relations

These all apply to relations on a set, not from one set to another.

• Reflexive: (x, x) ∈ R ∀x ∈ X

• Symmetric: (x, y) ∈ R⇒ (y, x) ∈ R

• Antisymmetric: x 6= y, (x, y) ∈ R⇒ (y, x) /∈ R (in other words, (x, y), (y, x) ∈
R⇒ x = y)

• Transitive: (x, y), (y, z) ∈ R⇒ (x, z) ∈ R

• Partial ordering: reflexive, antisymmetric, and transitive

• Total ordering: partial ordering, and every pair of elements is comparable

• Equivalence: reflexive, symmetric, and transitive

2.2 Equivalence relations

Let R be an equivalence relation on X. Then the equivalence class of a ∈ X is
[a] = {b : (a, b) ∈ R}.

The set of equivalence classes of X is a partition of X.
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2.3 Matrices of relations

The matrix of relation is a transformation matrix. Each column is the transfor-
mation of an input element to the output elements, where 1 denotes a relation
and 0 doesn’t. I.e., line up the input set along the horizontal direction, output
direction along the vertical direction, draw 1’s where relations happen. Com-
position is multiplication, just like a transformation matrix, and multiplication
by an element of the input set gives you the elements it is related to.

3 Mathematical induction

1. Basis step: Prove that S(1) is true.

2. Inductive step: Prove that S(k)→ S(k + 1) is true.

Sometimes you can avoid mathematical induction; not the only way to prove
things like these (e.g., geometric series, or using a similar, known mathematical
rule and applying some (usually linear) rule like differentiation.)

4 Groups

... TODO ...

5 Modular arithmetic and elementary number
theory

5.1 Basic rules of divisibility and modular arithmetic

Division algorithm:

∀a, b ∈ Z, b > 0 ∃!q, r ∈ Z : a = bq + r, 0 ≤ r < b

a|b⇒ a|nb

a|b, c|d⇒ (a + c)|d

a1 ≡ a2 mod b⇔ r1 = r2

where r1 and r2 come from the division algorithm of a1 and a2 with b.

a ≡ b mod n, c ≡ d mod n⇒ a + b ≡ (b + c) mod n
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5.2 GCD and LCM

a =

k∏
i

pαi
i , b =

k∏
i

pβi

i

where {pi} denotes the set of distinct prime factors that divide a or b. Then:

gcd(a, b) =

k∏
i

pminαi,βi

i

lcm(a, b) =

k∏
i

pmaxαi,βi

i

gcd(a, b)lcm(a, b) = ab

Another way to characterize gcd is: for any integer d s.t. d|a and d|b, then
d| gcd(a, b).

5.3 Euclid’s algorithm

To find gcd(a, b): let m = max(a, b), n = min(a, b). If n = 0, then gcd(a, b) =
gcd(m,n) = gcd(m, 0) = m. If not, then gcd(a, b) = gcd(n,m mod n).

5.3.1 Linear diophantine equations

Given a, b ∈ Z linear Diophantine equations ax + by = c, x, y ∈ Z always has a
solution x, y if gcd(a, b)|c, and Euclid’s algorithm can help discover it. Namely,
this involves the recurrence relation x = y′, y = x′ − y′q at any given step; at
the basis step, x = 1, y = 0 (since 1(m) + 0(0) = gcd(a, b) at the last step of
Euclid’s algorithm).

It’s easier to understand by going the full depth of Euclid’s algorithm, and
then expressing gcd(a)b as a linear combination of the m and n from that step;
again, on the bottom-most step, 1(m) + 0(n) = m = gcd(a, b); work your way
up from here. However, this can often be found by inspection.

This gives you a particular solution of x, y. To find the general solution, find
the associated homogeneous solution and go from there. I.e., solve ax = −by.
Thus x = −b

gcd(a,b) t, y = a
gcd(a,b) t. Thus the general solution is

x = x0 −
b

gcd(a, b)
t, y = y0 +

a

gcd(a, b)
t

5.3.2 Computing inverse modulo n

In general, ax ≡ 1 mod p has gcd(a, p) solutions. I.e., a has a unique solution
to this equation x = a−1 (inverse) iff gcd(a, p) = 1.
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