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DEF Let a, b ∈ Z, a 6= 0. Then a divides b (den. a|b) if ∃q ∈ Z : aq = b

(Note that ∀a 6= 0, a|0).

THM (Division algorithm) ∀a, d ∈ Z, d 6= 0 ∃! q, r ∈ Z : a = dq + r, 0 ≤
r < d.

THM (Well-ordering principle) For any nonempty set S ⊆ Z+, S has a
(unique) minimum element.

DEF (gcd) ∀a, b ∈ Z+, d = gcd(a, b) if d|a, d|b, and d′|a∧d′|b⇒ d′|d ∀d′ ∈ Z+.

(I.e., d divides both a and b, and all divisors of both a and b also divide
d. Clearly, d is the maximum of all divisors of both a and b.)

THM (Alternate definition of the gcd) Define

S :=

ax + by (∈ Z+) :

a, b ∈ Z+

x, y ∈ Z
ax + by > 0


Then, for some a, b ∈ Z+, define

d := minS

Then d exists, and
gcd(a, b) = d

PF Three things need to be proved: (1): existence of d; (2): d|a and d|b;
(3): if d′|a and d′|b, then d′|d. (2) and (3) are the hypotheses for the
definition of gcd.

1. Existence of d

S is a nonempty subset of Z; by the well-ordering principle, it has a
minimum element. Thus d exists (and is unique).
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2. d divides a and b

By the division algorithm, a = dq + r, q, r ∈ Z, r < d. To show that
d|a, we have to show that r = 0. We prove this by contradiction:
assume r > 0.

d ∈ S ⇒ ∃x, y ∈ Z : ax + by = d

d > r = a− dq = a− (ax + by)q = a(q − xq) + b(yq) ∈ S ≥ d⇒⊥
By the contradiction, r = 0. The same logic applies to show that d|b.

3. Any divisor d′ of both a and b also divides d

By hypothesis, ∃h, k ∈ Z : d′h = a, d′k = b.

d ∈ S ⇒ ∃x, y ∈ Z : ax + by = d

d = (d′h)x + (d′h)y = d′(hx + ky)⇒ d′|d �

THM Let a, b ∈ Z+, b 6= 0. Then gcd(a, b) = gcd(b, r), where r is obtained by
the division algorithm applied on a and b.

PF By division algorithm, a = bq + r, q, r ∈ Z. Define D to be the set of
integers that divide both a and b, and define D′ to be the set of integers
that divide both b and r. Suppose c ∈ D; i.e., c divides both a and b Then

c|bq ⇒ c|a− bq ⇒ c|r

Thus c is divides both b and r, and thus

c ∈ D′ ⇒ D′ ⊆ D

Conversely, suppose c ∈ D′, i.e., c divides both b and r. Then

c|bq ⇒ c|bq + r ⇒ c|a

Thus c divides both a and r, and thus

c ∈ D ⇒ D ⊆ D′

Thus D = D′. In particular, gcd(D) = maxD = maxD′ = gcd(D′). �

(Note that this theorem doesn’t guarantee termination of the Euclidean
algorithm; for this to be true, a ≥ b is a necessary condition).

ALG (Euclidean Algorithm) Define the following algorithm:

gcd (a , b) {
i f ( a < b)

swap ( a , b)
whi l e (b != 0) {

r = a mod b
a = b
b = r

}
re turn a

}
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Alternatively, recursively:

// the d r i v e r a s s u r e s that a<=b
gcd (a , b) {

i f (b = 0)
return a

return gcd (b , a mod b)
}
gcd drv ( a , b) {

re turn ( a < b) ? gcd (b , a ) : ( a , b )
}

Intuitive PF This is applying the above theorem to a and b, recursively.
Since b ≤ a (in the algorithm after the appropriate swapping, not neces-
sarily for the initial invocation), r < min{a, b}, the size of the inputs (from
(a, b) to (b, r)) are (strictly) decreasing with subsequent invocations of the
function. This means it will eventually reduce to the base case (c, 0); since
gcd(c, 0) = c = gcd(a, b) (by the above theorem), this algorithm is correct.

THM The equation ax+by = ma, b,m ∈ Z, a and b not both 0, has a solution
(x, y) ∈ Z2 iff gcd(a, b)|m.

PF (⇐) Since d = gcd(a, b) ∈ S (S defined in earlier theorem), ∃x′, y′ ∈
Z : d = ax′ + by′. Since d|m, kd = m ⇒ k(ax′ + by′) = m ⇒ a(kx′) +
b(ky′) = m⇒ (kx′, ky′) is a solution to the equation.

PF (⇒) Let ax + by = m, dh = a, dk = b. Then (dh)x + (dk)y =
d(hx + ky)m⇒ d|m. �

ALG Algorithm to find a solution to sa+ tb = gcd(a, b). (When the right side
of the equation is m gcd(a, b), then multiply the determined coefficients
by m).

g cd s t ( a , b ) {
i f ( a < b)

swap ( a , b)
i f (b = 0)

return ( gcd=a , s =1, t =0)
( gcd , s ’ , t ’ ) = gcd s t (b , a mod b)
return ( gcd=gcd , s=t ’ , t=s ’−t ’ ∗ ( a/b ) )

}

(Here, the division a/b represents the integer division quotient.) This
algorithm works due to the recurrence relation where gcd(a, b) = sa +
tb = (t′)a + (s′ − t′(a/b))b, where s′ and t′ are the integers such that
gcd(b, r) = s′b + t′r. The base case for this recursive relation is the case
gcd(d, 0), which can be expressed as (1)d + (0)0 = d.

Primes stuff Fundamental Theorem of Arithmetic, Infinite Primes, GCD/LCM
in terms of Prime Factorization, LCM in terms of GCD
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