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This is a more explicit understanding of Chapter 2: Arithmetical functions,
from Alan Baker’s A concise introduction to the theory of numbers.

Important results about the floor function

Basic properties of the floor function: [x+y] ≥ [x]+ [y] (floor function ”triangle

inequality”); if n ∈ Z, then
[
x
n

]
=
[
[x]
n

]
and [x+ n] = [x] + n.

Theorem 1. Let p be prime. Let l(n, p) be the largest integer such that pl

divides n!. Then the formula for l(n, p) is

l(n, p) =

∞∑
j=1

[
n

pj

]

Proof. We count.

l(n, p) =

n∑
m=1

∞∑
j=1
pj |m

1 =

∞∑
j=1

n∑
m=1
pj |m

1 =

∞∑
j=1

[
n

pj

]

If this is confusing, here is a brief explanation of the middle two expressions:

1. The inner summand is the highest power αi of p that is a factor of mi.
Sum this over all mis in 1 . . . n to get the highest power of p that is
a factor of n!. I.e., if pαi is the highest power factor of p in mi, then
pα1pα2 . . . pαn = p

∑n
m=1 αm ⇒ l =

∑
m=1 αm.

2. This assumes a different interpretation of the problem. Instead of sum-
ming over all the powers of p within each m, sum over all of the ms
divisible by pj , and then sum over all of the js. This should give you the
same result. The benefit is that the inner sum is easily representable with
the floor function.
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Corollary 1.1. l(n, p) ≤
[

n
p−1

]
Corollary 1.2. For m,n ∈ Z, m ≥ n ≥ 0,

(
m
n

)
is an integer. Moreover, if

n1 + n2 + · · ·+ nk = m, then the multinomial coefficient

(
m

n1, n2, . . . , nk

)
is an

integer.

Proof. Express m!, n!, and (m − n)! in their prime-factor representations over
the same set of primes {pi}.

m! =
∏
i

pαii , n! =
∏
i

pβii , (m− n)! =
∏
i

pγii , n!(m− n)! =
∏
i

pβi+γii

From the ”triangle inequality” for the floor function, observe that[
m

pj

]
≥
[
n

pj

]
+

[
m− n
pj

]
By (Theorem 1), for every prime pi of {pi}, αi = l(m, pi), βi = l(n, pi), and
γi = l(m−n, pi). By the above inequality and the formula for l, αi ≥ βi+γ+ i;
i.e., the power αi of each prime in the prime factorization of m! is at least
the power βi + γi of the same prime in the factorization of n!(m − n)!. Thus
n!(m− n)!|m!.

Multiplicative functions

Definition 2. A real function f defined over the positive integers is said to be
multiplicative if f(m)f(n) = f(mn) ∀m,n s.t. (m,n) = 0.

Theorem 3. If f is multiplicative, either f is identically zero or f(1) = 1.

Note that it is often useful to illustrate properties of multiplicative functions
by using the fundamental theorem of arithmetic to factor any positive integer
into mutually coprime factors.

Notes on divisors of products of coprime integers: Let m,n ∈ Z+. Then it
is easy to show

D = {d : d|mn} = {xy : (x, y) ∈ {x : x|m} × {y : y|n}}

is the set of divisors of mn. If (m,n) = 1, then |D| = |{x : x|m}| × |{y : y|n}|;
i.e., every factor of mn is uniquely factorable into the product of one divisor of
m and one divisor of n. This allows the rewriting of the operation∑

d|mn

f(d) =
∑∑

(x,y)∈{x:x|m}×{y:y|n}

f(xy) =
∑
x:x|m

∑
y:y|n

f(xy)

where the summation may be replaced by any other aggregate operation over a
set, and f is a generic function defined over positive integers.
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Here is the proof of uniqueness of factorization. By the fundamental theorem
of arithmetic,

m =

k∏
i=1

pαki , n =

l∏
j=1

q
βj
j

where pi, qj are prime for all i, j. Since (m,n) = 1, {pi} ∩ {qj} = ∅. Let a|m,
b|n; then

a =

k′∏
i=1

pαii , b =

l′∏
j=1

q
βj
j , ab =

k′∏
i=1

pαii

l′∏
j=1

q
βj
j

Since this factorization of ab is unique and {pi}, {qi} are disjoint, it is clear that
there is no way to factor this into the product of one divisor of m (the product
of some subset of {pi}) and one divisor of n (the product of some subset of {qi})
except by a · b.

Theorem 4. Let f be a multiplicative function, and define g to be

g(n) =
∑
d|n

f(d)

Then g is multiplicative.

Proof. Let (m,n) = 1. Then we can split the single sum over the factors of mn
into a double sum over the factors of m and the factors of n (proved above).

g(mn) =
∑
d|mn

f(d) =
∑
x|m

∑
y|n

f(mn) =
∑
x|m

f(m)
∑
y|n

f(n) = g(m)g(n)

Euler’s totient function (Sylvester)

Theorem 5 (Euler’s totient function).

φ(n) = n
∏
pi|k

(
1− 1

pi

)

where pi represents the set of unique prime factors of n.

Proof. Based on an argument provided by Sylvester, and not requiring showing
that the totient is multiplicative beforehand. We work backwards, using the
known result and showing that it is correct. By expanding the product, we see
that this is equivalent to

(φ(n)) = n−
∑
pr|n

n

pr
+
∑

prps|n,
r<s

n

prps
− · · ·
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Note that n
pr

denotes the number of numbers in 1 . . . n are divisible by pr,
n

prps
is the number of numbers in that range divisible by prps, and so on. We may
reformulate this counting into instead summing over each number m in that
range 1 . . . n, and counting the number of primes or products of primes that
divide m. Let l(m) = |{p : p|m, p|n}|; i.e., l(m) denotes the number of common
prime factors of m and n and l(m) = 0 ⇐⇒ m,n are coprime. Thus the above
expression is equivalent to

(φ(n)) =

n∑
m=1

1−
∑
r

pr|m

1 +
∑
r>s

prps|m

1− · · ·


The inner sums are equivalent to combinations over common prime factors of
m and n, thus

(φ(n)) =

n∑
m=1

(
1−

(
l(m)

1

)
+

(
l(m)

2

)
− · · ·

)
=

n∑
m=1

l(m)∑
r=1

(−1)r
(
l(m)
r

)
Note that the inner summation is of the form of a binomial power expansion,
i.e.,1

a∑
b=0

(1)a−b(−1)b
(
a
r

)
= (1− 1)a =

{
1 if a = 0

0 else

Thus

c(m) =

l(m)∑
r=1

(−1)r
(
l(m)
r

)
=

{
1 if m,n coprime

0 else

and c(m) is a simple indicator of whether m,n are coprime. This finally sim-
plifies the totient formula down to a clearly correct statement: φ(n) counts the
integers in 1 . . . n coprime to n, thus concluding the proof.

(φ(n)) =

n∑
m=1

c(m)

Note that, while this proof of the formula for the totient function does not
require its multiplicativity, the formula itself may be used to prove its own
multiplicativity.

Theorem 6. Define g(n) as follows:

g(n) =
∑
d|n

φ(n)

Then g(n) = n.
1The following formulation includes first term 1 into the summation, but this introduces

the somewhat-iffy 00 case. You can see that the value of this summation is clearly 1 when
l(m) is zero, as you have no primes to choose from in the pre-simplified version. So this is
absolutely correct (and often is, working outside of an analysis context).
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Proof. By (Theorem 4), the summation on the left is a multiplicative function.
Thus it may be broken up over the prime factorization of n as follows:

g(n) =
∑
d|n

(n =)
∏
pi|d

pαii

 =
∏
pi|d

∑
d|pαii

φ(pαii )


The inner summation can be computed using (Lemma 7):∑

d|pαii

φ(pαii ) = 1 + (p− 1) + (p2 − p) + · · ·+ (pαi − pαi−1) = pαi

Thus the product in g(n) turns back into the prime factorization for n. Thus

g(n) =
∏
pi|d

pαii = n

Euler’s totient function (based on multiplicativity)

Lemma 7 (Totient function on prime powers). Let p be prime. Then

φ(pn) = pn − pn−1

Proof. Since pn has only one unique prime factor p, p must divide any number
in 1 . . . pn that shares a common prime factor with pn. There are pn/p = pn−1

such numbers. Thus the number of numbers in 1 . . . pn that are coprime with
pn is pn − pn−1.

Corollary 7.1. Let p be prime. Then φ(p) = p− 1.

For now, assume that the totient function is multiplicative (which must be
shown later). This, along with (Lemma 7), makes the proof for the totient
function very simple.

Theorem 8 (Euler’s totient function (based on multiplicativity)). Since the
totient function is multiplicative and is defined on powers of primes (in a relation
given by (Lemma 7)),

φ(n) = n
∏
p|n

(
1− 1

p

)
Proof. By the fundamental theorem of arithmetic, n is uniquely factorable into
a product of its primes, i.e.,

n =
∏
pr|n

pαrr

5



φ(n) = φ

∏
pr|n

pαrr

 =
∏
pr|n

φ(pαrr ) =
∏
pr|n

pαrr

(
1− 1

pr

)

=

∏
pr|n

pαrr

∏
pr|n

(
1− 1

pr

) = n
∏
p|n

(
1− 1

p

)

This proof is clearly much simpler and straightforward than that in the
previous section, and doesn’t require the clever interpretation and manipulation
of counting principles. However, we still need to show multiplicativity of the
totient function to finish this proof. This can be done using the formula of
the totient function (if proved already by some other manner, such as in the
previous section) or using the Chinese remainder theorem (this will be proved
later).

The Möbius function µ(n)

The following result is not shown in the book and may be obvious, but it was
not immediately apparent to me, so here it is.

Lemma 9. Let f be an arithmetic function. Then∑
d|n

f(d) =
∑
d|n

f
(n
d

)

Proof. The condition for d is symmetric to a condition for n
d ; i.e., n|d ⇐⇒ n

d |d.
The result follows by substituting d = n

d′ :∑
d|n

f(d) =
∑
n
d′ |n

f
( n
d′

)
=
∑
d′|n

f
( n
d′

)
.

Definition 10. Let n ∈ Z+ have k distinct prime factors. Define the Möbius
function µ(x) as follows:

µ(x) =


1 if n = 1

0 if n has any repeated prime factors

(−1)k else

µ is multiplicative: if (m,n) = 1, where m has k1 distinct prime factors
and n has k2 distinct prime factors, then if m (or n) has a repeated prime
factor, then the product will also have a repeated prime factor and 0 · µ(n) =
µ(m)µ(n) = µ(mn) = 0; otherwise, all of the prime factors will be unique and
(−1)k1(−1)kn = µ(m)µ(n) = µ(mn) = (−1)k1+k2 . The convention that µ(1) =
1 further makes the Möbius function fit well with multiplicative properties.
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Lemma 11. Define v(n) as follows:

v(n) =
∑
d|n

µ(x)

Then

v(n) =

{
1 if n = 0

0 if n > 0

The proof for this lemma is immediate.

Theorem 12 (Möbius inversion formula). Let g(x) =
∑
d|n f(d), where f is an

arithmetic function. Then

f(n) =
∑
d|n

µ(d)g
(n
d

)
(i.e., f is the Dirichlet convolution of its sum-function g and µ) and vice versa.

Proof. (⇒) We use (Lemma 9) and manipulate equivalent indexing to achieve
the result:∑

d|n

µ(d)g
(n
d

)
=
∑
d|n

µ
(n
d

)
g(d) =

∑
d|n

∑
d′|d

µ
(n
d

)
f(d′) =

∑
d′|d|n

µ
(n
d

)
f(d′)

=
∑
d′|n

f(d′)
∑
d′|d|n

µ
(n
d

)
Note that d′|d|n ⇐⇒ n

d |
n
d′ , so this becomes

=
∑
d′|n

f(d′)
∑
n
d |

n
d′

µ
(n
d

)
=
∑
d′|n

f(d′)v
( n
d′

)
Since v(n/d′) = 1 ⇐⇒ n = d′ by (Lemma 11), this simplifies to

f(n) · 1 +
∑
d′|n
d′ 6=n

f(d′) · 0 = f(n)

Proof. (⇐) Let f be defined in the following form:

f(n) =
∑
d|n

µ
(n
d

)
g(d)

Then∑
d|n

f(d) =
∑
d|n

∑
d′|d

µ

(
d

d′

)
g(d′) =

∑
d′|d

g(d′)
∑
d′|d|n

µ

(
d

d′

)
=
∑
d′|n

g(d′)
∑
d
d′ |

n
d′

µ
( n
d′

)
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=
∑
d′|n

g(d′)v
( n
d′

)
= g(n)

(This proof is very similar to that in the forward direction, so some intermediate
steps and explanation are not shown here.)

Some of the reindexing from the book was difficult for me to follow and un-
derstand. Online resources such as https://math.berkeley.edu/~stankova/

MathCircle/Multiplicative.pdf and https://math.stackexchange.com/a/

1757370/96244 were helpful to me.

Theorem 13 (Totient-Möbius relationship).

φ(n) = n
∑
d|n

µ(d)

d

Proof. (Using totient formula) Expanding the totient formula in the same way
as in the proof of (Theorem 5), we get

φ(n) = n

1−
∑
pr|n

1

pr
+
∑

prps|n,
r<s

1

prps
− · · ·



= n

µ(1)(= (−1)0)

1
+
∑
pr|n

µ(pr)(= (−1)1)

pr
+
∑
prps|n
r<s

µ(prps)(= (−1)2)

prps
+ · · ·


= n

∑
d|n

µ(d)

d

In the original formulation of the totient formula, we are only counting factors
of p that have only unique prime factors – this is accommodated nicely for be-
cause µ(n) = 0 for all of the other factors (those with repeated prime factors),
and thus are implicitly accounted for in this summation.

Proof. (Using Möbius inversion formula) The sum-function g(n) =
∑
d|n φ(n) is

equal to n by (Theorem 6). Apply the Möbius inversion formula:

φ(n) =
∑
d|n

µ(d)g
(n
d

)
=
∑
d|n

µ(d)
µ(d)

d
= n

∑
d|n

µ(d)

d
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