
MA345 – Test 2 Review

Jonathan Lam

April 5, 2020

This test covers Chapter 2: Elementary Functions, and Chapter 3: Integrals of
Complex Variables and Applications, 9th edition by Churchill and Brown.
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1 The exponential and log functions

1.1 Definitions

ez := exeiy

Here, if x is a root 1/n, then the positive nth root is used, i.e., ex=1/n = n
√
e. If

w = ρeiφ = ez, then logw = z. We define the inverse to be the log function:

logw = log(ρeiφ) := ln |z|+ i arg z = ln ρ+ i(φ+ 2nπ), n ∈ Z

1.2 Notes

• For calculating the exponential, we begin in rectangular form and end in
polar form; the reverse is true for the logarithm.

• ez is many-to-one and log z is one-to-many. Thus elog z = z is a single
value and log ez = z + 2nπ, n ∈ Z is multi-valued. We may choose a
single value of the log function by selecting a particular branch of the arg
function, in particular, the principal logarithm Log z is defined as:

Log z := ln |z|+ iArg z

and this reduces to the real case when z is a positive real.

• The complex exponential is defined over the entire complex plane and is
entire; the logarithm is defined over the punctured complex plane. Since
we need to choose a branch of the logarithm to get a singly-valued function,
the logarithm is not analytic anywhere on its branch cut or at the origin
(the branch point); however, it is analytic everywhere else.

• Because of branches and the “wrapping” nature of the exponential and
logarithm, some properties of the exponential and log may not hold true
everywhere, e.g., log zc = c log z is not true for all values of z, c and all
branch cuts.

1.3 Properties

|ez| = ex

thus |ez| 6= 0.
arg ez = y + 2nπ, n ∈ Z

ez1ez2 = ez1+z2

ez1

ez2
= ez1−z2

1

ez
= e−z

d

dz
ez = ez
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ez+2πin = ez, n ∈ Z

thus ez is 2πi-periodic and is many-to-one.

d

dz
Log z =

1

z
(z 6= 0,Arg z 6= π)

This uses the polar form of the C-R equations (since it is a pain to express the
angle in terms of rectangular coordinates). The same is true for any branch,
applying the appropriate condition for its branch cut.

log(z1z2) = log z1 + log z2

log
z1
z2

= log z1 − log z2

These properties are not always true for the principal branch.

2 The power function

2.1 Definitions

zc := ec log z

where c ∈ C is some constant. In general, z is multiple-valued unless c ∈
{0, 1, 2, . . . }. The principal value of zc is as expected:

P.V. zc := cLog z

We can use this to define the exponential function with base c ∈ C:

cz := ez log c

and has a principal value as expected.

2.2 Notes

• zn, n ∈ Z and z1/n, n 6= 0 ∈ Z agrees with the previous definition (i.e.,
repeated multiplication and square roots). The former is singly-valued.

• Since this definition of the exponential function with arbitrary base sug-
gests that exponential functions are multiply-valued, this suggests that
the fundamental exponential is also multiply-valued. Thus, our usual in-
terpretation of ez is the principal exponential function with base e.

• Some real properties may not work here because of wrapping, e.g., (z1z2)c =
zc1z

c
2 is not a valid identity for all z1, z2, and c.
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2.3 Properties

1

zc
= z−c

Again, we may have branches of the power function determined by the branches
of log z. To find the derivative, we must choose a particular branch of log z, and
then by the Chain rule:

d

dz
zc = czc−1

If we choose a specific value of arg c, then cz is entire, and its derivative is

d

dz
cz = cz log c

3 The trigonometric and hyperbolic functions

3.1 Definitions

The real sine and cosine functions can be defined using the exponential function
and Euler’s formula alone. We can define their complex analogues by replacing
the real parameters with complex ones:

sin z :=
eiz − e−iz

2i

cos z :=
eiz + e−iz

2

The other trigonometric functions are defined in terms of these two functions
in the same way. Their derivatives are all in the same form as their real coun-
terparts.

We define the hyperbolic functions as their analogues are defined:

sinh z =
ez − e−z

2

cosh z =
ez + e−z

2

Likewise, we define the rest of the hyperbolic functions in the same way, and
get results of the same form as their real counterparts.

We can obtain the inverses of the trigonometric and hyperbolic functions by
solving a quadratic expression, where the unknown variable is eiz or ez. We get
the following results:

sin−1 z = −i log
[
iz + (1− z2)1/2

]
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cos−1 z = −i log
[
z + i(1− z2)1/2

]
tan−1 z =

i

2
log

i+ z

i− z

sinh−1 z = log
[
z + (z2 + 1)1/2

]
cosh−1 z = log

[
z + (z2 − 1)1/2

]
tanh−1 z =

1

2
log

1 + z

1− z

3.2 Notes

• As expected, the trigonometric and hyperbolic functions reduce to their
real counterparts when z ∈ R.

• While these functions are periodic and bounded in the real direction for
a particular y, they are unbounded in the imaginary direction (and grow
exponentially in magnitude).

• The inverse functions are multiply-valued, unless a single branch of the
logarithm and square root are used.

3.3 Properties

d

dz
sin z = cos z,

d

dz
cos z = − sin z

sin−z = − sin z, cos−z = cos z

sin(z1 + z2) = sin z1 cos z2 + cos z1 sin z2

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2

sin
(
z +

π

2

)
= cos z, sin

(
z − π

2

)
= − cos z

sin2 z + cos2 z = 1

sin(z+2π) = sin z, sin(z+π) = − sin z, cos(z+2π) = cos z, cos(z+π) = − cos z

We can express the real and imaginary parts w.r.t. the trigonometric and hy-
perbolic functions of real variables:

sin z = sinx cosh y + i cosx sinh y

cos z = cosx cosh y − i sinx sinh y

Note that to derive the above expressions, we use the sum identity on z1 = x,
z2 = iy and then differentiate the sin decomposition to achieve the cos decom-
position. These identities can also be used to show:

| sin z|2 = sin2 x+ sinh2 y
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| cos z|2 = cos2 x+ sinh2 y

sin z = 0 ⇐⇒ z = nπ n ∈ Z

cos z = 0 ⇐⇒ z = (2n+ 1)
π

2
, n ∈ Z

i.e., the zeros of the complex sine and cosine are the same as those of their
real analogues. (And the zeros of the hyperbolic functions are of the same
magnitude, but on the imaginary axis.)

sinh iz = i sin z, cosh iz = cos z

sin iz = i sinh z, cos iz = cosh z

d

dz
sin−1 z =

1

(1− z2)1/2

d

dz
cos−1 z = − 1

(1− z2)1/2

[
= − d

dz
sin−1 z

]
d

dz
tan−1 z =

1

1 + z2

4 Derivatives and definite integrals of complex-
valued functions of a real variable

4.1 Prelimary results

Let
w(t) = u(t) + iv(t)

where t ∈ R, and u and v are real-valued. Then, when u′ and v′ exist, then the
derivative w′(t) is

w′(t) = u′(t) + iv′(t)

In other words, this shows us how to differentiate a function if we parameterize
it w.r.t. a real variable. Since u and v are real-valued, we may integrate over
them. Thus, the definite integral of w is something we already know from regular
calculus: ∫ b

a

w(t) dt =

∫ b

a

u(t) dt+ i

∫ b

a

v(t) dt

This is well-defined whenever u and v are piecewise-continuous, as we know from
integrals of real functions. FTC also applies; if the complex-valued function of
a real variable W is found s.t.

U ′(t) = u(t), V ′(t) = v(t)

(i.e., if W is the antiderivative of w), then∫ b

a

w(t) dt = W (b)−W (a)
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4.2 Notes

• The mean value theorem for derivatives or integrals doesn’t always apply,
due to the wrapping (periodicity) of the complex plane.

5 Contours, contour integrals, and the ML-inequality

5.1 Definitions

An arc is the set of points generated by a continuous parameterization of x and y
on the complex plane over the same interval. In other words, z = z(t) (a ≤ t ≤ b)
is an arc if

x = x(t), y = y(t)

are piecewise continuous over the interval [a, b]. An arc is simple if it does not
self-intersect. An arc is called a simple closed curve if it is simple except for the
fact that its end and starts points are the same. It is positively oriented if the
interior of the loop is always on the left (i.e., traveling CCW). A differentiable
arc is one in which z′(t) is continuous, where

z′(t) =
√

(x′(t))2 + (y′(t))2

An arc is smooth if its derivative is continuous and its value is nonzero in the
open interval (a, b).

A contour is a piecewise smooth arc (i.e., it is composed of a finite number of
smooth arcs joined end to end). A simple closed countour (SCC) is a contour
where only the final and initial points are the same. Like in the real case, the
contour (line) integral is defined as follows:∫

C

f(z) dz =

∫ b

a

f [z(t)]z′(t) dt

If |f(z)| ≤M ∀z ∈ C, then the upper bound on the modulus of the integral is∣∣∣∣∫
C

f(z) dz

∣∣∣∣ ≤ML

where L is the arc length (shown below). A slightly more general case is that∣∣∣∣∣
∫ b

a

w(t) dt

∣∣∣∣∣ ≤
∫ b

a

|w(t)| dt

5.2 Notes

• The same arc can be represented by multiple parameterizations, and there
may be different arcs with the same set of points (i.e., if an arc overlaps
itself)
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• If we change the parameterization of an arc, we still get the same value
when integrating some function over it. I.e., no matter the parameteriza-
tion of an arc,

L =

∫ b

a

|z′(t)| dt

is the arc length and is invariant of the parameterization of the arc.

• The contour integral may begin or end on a branch cut of the integrand.

6 Major integral theorems

6.1 Definitions

A simply connected domain is one s.t. every SCC completely inside the domain
only encloses points in the domain. (Anything else is a multiply-connected
domain.)

6.2 Antiderivative theorem

Suppose that a function f(z) is continuous in a domain D. TFAE:

1. f(z) has an antiderivative F (z) throughout D.

2. Integrals of f(z) along contours lying entirely in D have the same value
(path independence): ∫ z2

z1

f(z) dz = F (z2)− F (z1)

3. For a CC lying completely in D,∮
C

f(z) dz = 0

Note that the antiderivative of a function is unique (if it exists) and is necessarily
differentiable.

6.3 Cauchy-Goursat theorem (CG)

If a function f is analytic at all points interior to and on a simple closed contour
C, then ∮

C

f(z) dz = 0
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6.4 Principle of deformation of paths (PDP)

Let C1 and C2 denote POSCCs s.t. C1 is interior to C2. If a function f is
analytic on and between them, then∮

C1

f(z) dz =

∮
C2

f(z) dz

6.5 Cauchy integral formula (CIF)

Let f be analytic AOIC a SCC C. If z0 is a point interior to C, then:

f (n)(z0) =
n!

2πi

∮
C

f(z)

(z − z0)n+1
dz

We denote the use of this formula with argument n to be CIF(n).

6.6 Summary of major conditions and results

Conditions:

1. Known antiderivative throughout some domain. (Doesn’t have to be sim-
ply connected.)

2. A closed curve in that domain. (Doesn’t have to be simple.)

then integrals around a closed loop evaluate to zero, and two integrals to same
place evaluate to the same value.

Conditions:

1. SCC C

2. f AOIC C

then the integral around the curve evaluates to zero.

Conditions:

1. POSCC C2

2. POSCC C1 completely contained within C2

3. f analytic on and between C1 and C2

then the integrals of f around C1 and C2 are equal.

Conditions:

1. POSCC C

2. f AOIC C
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3. Integral of form ∮
C

f(z)

(z − z0)n+1
dz

where z0 lies in the interior of C, and n ≥ 0 ∈ Z

then the integral evaluates to∮
C

f(z)

(z − z0)n+1
dz =

2πi

n!
f (n)(z0)

7 Other theorems (not for calculating integrals)

7.1 Theorems for simply-connected domains

• If a function is analytic throughout a domain D, then∮
C

f(z) dz = 0

for any CC C contained completely within D.

• A function that is analytic throughout a domain D has an antiderivative
throughout D.

• Entire functions always possess antiderivatives.

7.2 Consequences of CIF

• If f is analytic at a point, then its derivatives of all orders are analytic
there too.

• Let f be continuous on a domain D. If∮
C

f(z) dz = 0

for every CC C in D, then f is analytic throughout D. (This is the
converse to a theorem in (Sec. 6.4.).)

• (Cauchy’s inequality) Assume f is AOIC a PO circle CR, centered at z0
and with radius R. If MR denotes the maximum value of |f(z)| on CR,
then ∣∣∣f (n)(z0)

∣∣∣ ≤ n!MR

Rn
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7.3 Maximum modulus principle

A secondary result is Gauss’s mean value theorem: if f is analytic within and
on a given circle centered at z0 and with radius ρ, then

f(z0) =
1

2π

∫ 2π

0

f(z0 + ρeiθ) dθ

i.e., the value of f at the center is the mean of the values of f along the edge of
the circle. The main result is the maximum modulus principle: If a function f
is analytic and not constant in a given domain D, then |f(z)| has no maximum
value in D.

8 Uncovered results

8.1 Liouville’s theorem

If a function f is entire and bounded in the complex plane, then f is constant
throughout the plane.

8.2 The fundamental theorem of algebra

Any n-th order polynomial

P (z) =

n∑
i=0

aiz
i

has at least one zero. By applying this theorem repeatedly, then an n-th order
polynomial has exactly n zeros (not necessarily all distinct). In other words, we
can factor any n-th order polynomial P (z) into

P (z) =

n∏
i=1

(z − zi)

where {zi} are the zeros of P , not necessarily all distinct.
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