
The Photo Union
for the Advancement of Software and Photo Art

Photocol (backend)
Contributors: Jonathan Lam, Richard Lee, Tiffany Yu, Victor Zhang
GitHub: https://github.com/photocol/photocol-server

Macro-level Overview of the Project
The main server is stored in photocol-server.
DB setup/maintenance operations are stored in photocol-DB_SETUP.
The CLI is stored in photocol-cli.
Specifics about endpoints, error codes, and more are available in the server wiki .

Dependencies: Spark Framework, Gson, SLF4J, Apache Commons 3, Amazon AWS
SDK V2, MariaDB JDBC driver. Maven is used to manage dependencies.

User-oriented Overview of the System
The Photo Union is a photo management and collection system, where users can
create accounts, upload photos and make collections to share with others.

At the current stage of the project, users can interact with the server via a custom
CLI (photocol-cli), or via ordinary HTTP requests. Current features implemented
include basic user creation and login session management, ability to create photo
collections, ability to upload photos to account, ability to add photos to collections,
and ability to get photos from the server, all with basic permissions checking.

Users have roles in collections: Owner, Editor, and Viewer as a form of access
control. Images cannot be shared by themselves; rather, access permissions are
set on entire collections. Image names (once uploaded to S3) are
randomly-generated and unique site-wise; collections are accessible through a
semantic URL namespaced by username (e.g., /someuser/theircollectionname,
where someuser2 could also have a collection called theircollectionname).
(Usernames are unique.)

Black-Box Diagram

https://github.com/photocol/photocol-server/wiki
https://github.com/photocol/photocol-server
https://github.com/photocol/photocol-DB_SETUP
https://github.com/photocol/photocol-cli
https://github.com/photocol/photocol-server/wiki
https://github.com/photocol/photocol-cli

The Photo Union
for the Advancement of Software and Photo Art

High Level Overview of Codebase
Our system has three layers, the handler layer, the service layer, and the store
layer. This type of abstraction allows for different team members to work on
different aspects of the design without getting too hung up with all the aspects of
the system.

The handler layer (package photocol.layer.handler) is responsible for responding
to the HTTP requests from the end-user, deserializing and doing (currently
minimal) validation on the user, and passing the deserialized objects down to the
service layer. (Only the /logout endpoint doesn’t pass down data to the next layer,
since it only invalidates the http session).

The service layer (package photocol.layer.service) is responsible for the
application logic. Some of these endpoints are a simple passthrough (e.g.,

The Photo Union
for the Advancement of Software and Photo Art

PhotoService::getUserPhotos) to the store layer, but many of these perform
multiple store-level logic (i.e., checking and validation).

The store layer (package photocol.layer.store) manages the database. This layer
provides methods to interface with retrieve and insert data into the databases. See
comments below about why we decided to use a database.

In addition, we have some utility classes (package photocol.util), which contains a
MariaDB and AWS S3 connection manager.

This layered structure also enables us to have ‘hot swappable’ layers - any changes
to the one layer are opaque to another layer. This means that upgrades to each
layer are possible without breaking the entire system. The trade-off is that we have
to be careful when making changes to our method, that is keep the return types
and return values in sync.

Design Decisions (a slightly-lower-level overview)
While databases were out of scope, we decided to implement a MySQL (actually:
MariaDB) DB scheme, because we felt that that would be the most logical way to
implement all of the access control schemes, especially with joins and built in
concurrency management. In particular, this means that in addition to basic tables
storing user, photo, and collection data, in order to implement the many-to-one
relationship between images to users, we use foreign keys in the photo table
(currently not implemented as foreign keys, but that will be changed later).
Similarly, for the many-to-many implementation between users and collections
(i.e., access control permissions), and the many-to-many implementation between
collections and images, we create two additional junction tables just storing lists of
relations (pairs of foreign keys), which will be used in joins to check user
permissions to images or collections.

Also, we decided to implement S3 capability for uploading/downloading, since this
was an integral part of our system and provided a scalable interface for large
volumes of uploads and downloads (as opposed to uploading directly onto our
server, for which we have not received the specifications of and may not be suited
to large network traffic). S3 has the nice-to-have’s of huge scalability, high
reliability, version control (e.g., ETags for caching/change detection), and
concurrency support built-in.

Data and Entity Schemas
Common Java entity classes and their public members are shown. Most of these
Java types are only meant to manage the fields of an incoming or outgoing request,
and meant to be (more or less) directly serialized/deserialized to/from JSON.

The Photo Union
for the Advancement of Software and Photo Art

class photocol.definitions.response.StatusResponse<T>: a wrapper for returning
status codes with optional data.

enum Status: making application-specific response codes semantic

int status: hold the Status enum response code
T payload: hold the (optional) data payload of the request

class photocol.definitions.User: hold credentials on signup/login requests, or when
retrieving user data

String email
String username
String passwordHash (currently-unhashed)

class photocol.definitions.PhotoCollection: hold information about a collection
when performing some operation about it

boolean isPublic
String name
List<ACLEntry> aclList: list of access control entries, only for endpoints that

request to change/view the access control list to the collection
String uri: this is automatically generated from name to allow collections to

be accessible at /collections/:collectionuri

class photocol.definitions.Photo: hold information about an image when updating
or retrieving image information

String uri
String description
String uploadDate

The schema for the database tables is shown below. These definitions can be found
in the photocol-DB_setup repo.

table photocol.user:

uid int not null auto_increment
email varchar(255) not null unique
username varchar(255) not null unique
password varchar(255) not null
primary key(uid)

table photocol.collection

cid int not null auto_increment
pub tinyint(1) not null
name varchar(255) not null

https://github.com/photocol/photocol-DB_SETUP

The Photo Union
for the Advancement of Software and Photo Art

uri varchar(255) not null
primary key(cid)

table photocol.photo

pid int not null auto_increment
uri varchar(255)
upload_date date
description varchar(255)
uid int not null
primary key(pid)

table photocol.acl (Access Control Lists)

cid int not null
uid int not null
role int not null
primary key(cid, uid)

table photocol.icj (Image-Collection Junction table)

pid int not null
cid int not null
primary key(pid, cid)

Team Dynamic
The project is definitely moving along rather well - a lot of functionality is coming
together. We were/are having some version control/git syncing issues at points - it
seems that IntelliJ doesn’t automagically update files when we git pull (we have to
click Refresh from Disk often). Also, since we are running 4 different OSes across
the 4 of us, we do have some package version differences. MariaDB on one of our
machines has a 767 max characters per row, which differs from the other three
machines, and over the duration of this stage of the project, we were unable to
resolve it. We may just have to recompile and reinstall a newer MariaDB.

In terms of team dynamic it seems we are very busy people with rather conflicting
schedules so meeting up for during the week is a rather difficult task to
accomplish. This means that we did have points in our project where two people
wrote code for the same functionality because of improper communication. In the
future we do need a better way of managing who does what and when in order to
not waste anybody’s time.

