
PROTOCOL DESIGN TEMPLATE
Dan and Jon's Wings (and Thodoris and Josh)

& Thodoris & Josh

Message Flow Template
Client Server

Msg Type: FILE GET/SEND/RESTART REQUEST

Msg Type: ACK
Connection Process:

Data Exchange:

Recovery Process:

Msg Type: CONTROL PACKET (START)

Msg Type: DATA PACKET (Continue until all sent)

Msg Type: CONTROL PACKET (FIN)

Msg Type: ACK

Msg Type: CONTROL PACKET (Recovery)

Msg Type: DATA PACKET (Continue until recovered)

Msg Type: ACK

Msg Type: FIN ACK

Msg Type: FIN ACK

Msg Type: ACK

Termination Process:

The software client must implement both the file sending and receiving parts. Both should listen
on ports 10512 (control packets) and 10256 (data packets) by default (or can be configured
otherwise).

Connection initiation
● Randomly generate a transaction ID, which will be sent on the initial file transfer request.

The receiver of the file transfer request may indicate that this transaction ID is not unique,
and this repeats until the transaction ID is indeed unique.

Software Implementation Considerations

ACKs:
● ACKs are sent on response of all control packets (which are not as numerous).
● ACKs are sent from file receiver every n data packets (n will be fixed based on recovery

attempt number; i.e., initially n=28, then n=27, … n=21). Specific implementation of strict
congestion control can be left up to the sender implementation (for example, compare time
to send n number packets vs getting an ACK back from the receiver regarding those n
packets, or slow down after a few lost ACKs).

● One way for the connection termination is after z lost consecutive ACKs (which would
indicate that the receiver is not still connected).

Restart mechanism:
● Implemented purely software-side on file receiver side; if connection closed with some error,

can retry seamlessly and just request the remaining packets with special restart opcode
(basically starting file request and then immediately starting recovery with specified
packets).

Software Implementation Considerations

● After all data packets sent, if any packets are lost, receiver sends a control packet specifying
what packets were lost.
○ Flow loops back to sender sending data packets until all lost data packets sent.
○ If packets are still lost, flow loops back again to sending data packets.
○ This process loops y number of times, depending on the size of the file being sent.
○ If packets are still lost after y tries, terminate connection.

We can let n (number of packets between ACKs), y (number of recovery attempts), z (number of
consecutive ACKs before connection is lost), be determined by the specific software
implementation (or tweaked manually when starting the implementation).

Recovery Process

Control Header Template ≪port:10512≫

0 7 8 15 16 23 24 31

Op code 1 byte Transfer ID 2 bytes Check sum 2 bytes

・・・ Data Length 4 bytes

・・・

★・・・Arbitrary Extra Data・・・★
★・・・0 to 1450 bytes・・・★

Checksum 2 bytes

Bits

Data Header Template ≪port:10256≫

0 7 8 15 16 23 24 31

Session Transaction ID (2 bytes) Packet Size (2 bytes)

Packet Sequence Id (8 bytes)

Check sum (8 bytes)

Data (variable length)

Bits

Control Header Values

Header Values Meaning/Derivation/Definition

TID 2 bytes Transfer ID

Opcode 1 byte Opcode

Data length 4 bytes Length of data (in bytes)

Data 0-1450 bytes Arbitrary length extra data (dependent on operation)

Checksum 2 bytes Checksum

Control Header Opcodes

Opcode Value Extra data Initiator Meaning

Acknowledgement 0 Opcode of packet acking to Either Received packet, used in
basic flow termination

Get file request 1 File path Connection initiator Request file to be sent
over to initiator

Send file request 2 File path Connection initiator Request file to be sent
from initiator

Finished sending 3 Retries File sender Current batch of packets
sent

Bad packets 4 List of missing packets
(sequence order; specific
numbers or ranges)

File receiver Not all packets received

Error 5 Error code Either Error in file transfer

Stop file sending 6 Either Stop request

Restart request 7 List of missing packets
(sequence order)

Data Header Values

Header Values Meaning/Derivation/Definition

Packet Size 0-65535 Size of the Header Packet

Packet sequence index: 8 bytes 0-[264-1] indexes each individual packet

Session/Transaction ID 0-65535 Unique identification for file transaction

Checksum 0-255 detects errors

State Diagrams Template

Closed

Client Behavior

Await first ACK
(Control)

Connection
Established

CONNECTION START: Send/receive/restart
file transfer request

Client Connect Sent to port 10512

Ack Received

Data Transfer

Finished Data
Transfer

Control Packet
Received

State Description

Closed Client is not sending any packets

Await first ACK
(control)

Wait for the first ACK after sending
control packets

Connection Established Send starting control packet to start data
transfer

Data Transfer Make sure ACKs are received after every
x data packets, if not assume connection
is dead.

Finished Data Transfer After Data Transfer, determine if ACK
was received

Control Packet
Received

If no packets dropped, proceed to
termination, else proceed to recovery

Recovery Proceed with recovery for dropped
packets, then proceed to termination

Termination FIN ACK and ACK responses.

Send Control Packet w/
Error Code

Close connection with ERROR OPCODE;
sender pings receiver for error Control
Packet, restart connection w/ proper
restart opcode, handled via software.

No ACK
after x seconds

OPCODE==2
Sent control

packet to port
10512 to start
data transfer

Received ACK
every X Data

Packets (ensure
that connection

is still open)

All Packets Sent
to port 10256

ACK not
received

ACK Received

Control
Packet ACK
not received
after X retries

Recovery

Termination

No Packets
Dropped

OPCODE==4
Some packets
dropped

Successful

Recovery process,
attempt Y times

before
Termination

Recovery
Process Failed,
after Y attempts

Receiver sends
Control Packet
w/ Error code

Termination
Failed

Message Flow and State Diagram Questions

•How does the client initiate a connection? Get/Send/Resend file request opcode.

•Are you going to have authentication? Nay

•Are you going to have encryption? Absolutely none

•How will you confirm when a file has completed transfer? Finish sending opcode

•How will you ensure the integrity of the message in transit? Checksums

•How will you handle dropped packets? After sender sends “finish sending” opcodes, receiver sends ack (on
success) or sends “bad packets” opcode and lists sequence numbers of bad packets

•Who initiates the closing of the connection? Either with “stop file sending” opcode

•Will you have error handling? Basic — send error code and message in variable length

Message Header and Value Questions

•How many header types do you need? Does it make sense to define one header and have an opcode to differentiate
message types? Or does it make sense to have multiple header types? Two header types.

•How many bytes will the header(s) be? Data header- fixed 20 bytes + DATA

Control header- Fixed 11 bytes + Arbitrary Data

•Do you want the header to be a fixed size or do you want to enable variability? We have variability in the packet size field

•Do you want to make your header as small and efficient as possible, only catering to what is possible currently, or do you
want to future-proof your header by making it larger than currently necessary? Small headers, large variable for arbitrary
data (control header)

•Do you want to add options that allow you to introduce variability and future proof mechanisms?

Variable length extra data field and a whole byte for opcodes allows for expandability in control header.

Creative Thinking Process

